Design of Question Paper

II PUC PHYSICS (33)

Time: 3 Hours 15 Minutes (of which 15 minutes for reading the question paper)

Max. Marks: 70

The weightage of the distribution of marks over different dimensions of the question paper is as follows:

A. Weightage Objectives:

Objective	Weightage	Marks
Knowledge	40%	46/115
Understanding	30%	34/115
Application	20%	23/115
Skill	10%	12/115

B. Weightage to content/ subject units:

Unit No.	Chapter No.	Topic	No. of Hours	Marks	
I	1	Electric Charges and Fields	10	10	
II	2	Electric Potential and Capacitance	9	9	
III	3	Current Electricity	15	14	
IV	4	Moving Charges and Magnetism	12	11	
T 7	5	Magnetism and Matter	8	7	
V	6	Electromagnetic Induction	7	7	
371	7	Alternating Current	8	8	
VI	8	Electromagnetic Waves	3	3	
VII	9	Ray Optics and Optical Instruments	10	9	
VIII	10	Wave Optics	10	9	
TV.	11	Dual Nature of Radiation and Matter	6	6	
IX	12	Atoms	5	5	
v	13	Nuclei	7	7	
X	14	Semiconductor Devices & Electronics	10	10	
	TOTAL 120 115				

C. Weightage to form of questions:

Part	Question Main	Type of questions	Marks	Number of questions to be set	Number of questions to be answered
A	I	Multiple Choice Questions (MCQ)	1	15	15
	II	Fill in the blank type (FIB)	1	5	5
В	III	Short Answer (SA1)	2	9	5
C	IV	Short Answer (SA2)	3	9	5
D	V	Long Answer (LA)	5	6	3
	VI	Numerical Problems (NP)	5	4	2
		TOTAL	48	35	

Note:

- 1. Questions in I Main (MCQ) should be knowledge based only and should not involve numerical calculations.
- 2. Questions in II Main (FIB) should be simple, direct and should not involve numerical calculations.

D. Weightage to level of difficulty:

Level	Weightage	Marks
Easy	40%	46/115
Average	40%	46/115
Difficult	20%	23/115

General instructions

- 1. This blueprint must be used for setting question papers for all future examinations.
- 2. Questions should be clear, unambiguous, understandable and free from grammatical errors.
- 3. Questions which are based on same concept, law, fact etc. and which generate the same answer should not be repeated under different forms (MCQ, FIB, VSA, SA, LA and NP).

Blue Print for the Physics Question Paper II PUC PHYSICS (33)

		<u> </u>								
Unit	Chapter	Topic	Teaching Hours	Marks allotted	1 Mark (MCQ)	1 Mark (FIB)	2 Marks (SA1)	3 Marks (SA2)	5 Marks (LA)	5 Marks (NP)
I	1	Electric Charges and Fields	10	10	√	√		√	√	
II	2	Electric Potential and Capacitance	9	9	> >		✓			✓
III	3	Current Electricity	15	14	√			√	√	✓
IV	4	Moving Charges and Magnetism	12	11	✓		✓	✓	✓	
3 7	5	Magnetism and Matter	8	7	✓	✓	✓	\		
V	6	Electromagnetic Induction	7	7	> >		✓	✓		
VI	7	Alternating Current	8	8	√		√			✓
VI	8	Electromagnetic Waves	3	3	✓		✓			
VII	9	Ray Optics and Optical Instruments	10	9	√			√	√	
VIII	10	Wave Optics	10	9	✓	√	✓			✓
IV	11	Dual Nature of Radiation and Matter	6	6	✓				√	
IX	12	Atoms	5	5			√	√		
x	13	Nuclei	7	7	>	>	√	>		
λ	14	Semiconductor Devices & Electronics	10	10	>	>		>	>	
	TOTAL = 115 Marks				15	05	18	27	30	20

Instructions:

- 1. This blueprint must be used for setting question papers for all future examinations.
- 2. 5 Mark questions from chapters *Dual Nature of Radiation and Matter* and *Semiconductor Electronics* must be split questions of the form (1 + 2 + 2) or (1 + 1 + 1 + 2) or (2 + 3).
- 3. 3 Mark Question from the chapter *Nuclei* must be a numerical problem.

MODEL QUESTION PAPER FOR 2022-23

	II PUC	- PHYSICS (33)
	Time: 3 hours 15 min.	Max Marks: 70
Gen	eral Instructions:	
	All parts are compulsory.	
	•	the first two pages of the answer-booklet. For Part – A
	questions, first written-answer will be con	,
		c/circuit wherever necessary will not carry any marks. without detailed solutions will not carry any marks.
4.	•	
I. Picl		$\frac{PART - A}{A}$ options for $\frac{ALL}{A}$ of the following questions: $\frac{15 \times 1 = 15}{A}$
		e, the electric field due to it depends on the distance
	from it as:	•
	$(A)\frac{1}{(distance)^2}$	(B) $\frac{1}{(\text{distance})^3}$
	()	` '
	(C) (distance) ³	(D) (distance) ²
2.	Which one of the following is the unit	of capacitance?
	(A) farad (F)	(B) coulomb (C)
	(C) volt (V)	(D) tesla (T)
3.	An example for polar molecule is:	
	(A)Oxygen (O ₂) molecule	(B) Nitrogen (N ₂) molecule
	(C) Hydrogen (H ₂) molecule	(D) Water (H ₂ O) molecule
4.	The resistance of a carbon resistor is 1	$2 \times 10^5 \pm 10\%$ Ω . The colour of the first band of the
	resistor is:	
	(A)Green	(B) Black
	(C)Brown	(D) Silver
5.	Force on a charged particle moving	in a magnetic field is maximum when the angle
	between the velocity of the charge and	the magnetic field is:
	(A)180°	(B) 90°
	(C)45°	(D) 0°
6.	Identify the wrong statement among the	ne following options about <i>magnetic field lines</i> :
	(A)They form closed loops.	
	(B) The tangent drawn to the ma	agnetic field line at any point gives the direction o
	magnetic field at that point.	
	(C) They can intersect each other	
	(D)Outside a magnet, they go fro	
7.		duced emf in electromagnetic induction is:
	(A)Gauss's law in magnetism	(B) Ampere's circuital law

(D) Lenz's law

(C) Faraday's law

8. The principle behind the working of AC	generator is:
(A)Electromagnetic induction	(B) Eddy currents
(C) Hysteresis	(D) Torque on a current loop
9. In the case of alternating voltage applied	d to a resistor:
(A) the current leads the voltage by	y a phase angle of $\pi/2$
(B) the current lags behind the vol-	tage by a phase angle of $\pi/2$
(C) the current and the voltage are	in phase
(D) the current leads the voltage by	y a phase angle of $\pi/4$
10. Displacement current arises due to:	
(A)time varying electric flux	(B) constant electric flux
(C) change in magnetic flux	(D) constant magnetic flux
11. In case of <i>total internal reflection</i> :	
(A) light ray must be travelling fro	m rarer medium to denser medium.
(B) light ray must be travelling from	m denser medium to rarer medium.
(C) the angle of incidence must be	less than the critical angle.
(D) angle of refraction is 0° when t	he angle of incidence is equal to critical angle.
12. The phenomena of bending of light at the	ne corners of an obstacle is called:
(A)refraction	(B) polarization
(C) interference	(D) diffraction
13. Davisson – Germer experiment proved:	
(A) wave nature of electrons	(B) particle nature of electrons
(C) wave nature of light	(D) particle nature of light
14. Among the following, which set of nucle	ei are isotopes?
$(A)_{6}^{14}C$ and $_{7}^{14}N$	(B) ${}_{2}^{3}He$ and ${}_{1}^{3}H$
(C) $^{235}_{92}U$ and $^{238}_{92}U$	(D) $_{14}^{28}Si$ and $_{32}^{73}Ge$
15. For an AND gate, which set of inputs A	and B give a high output Y = 1?
(A)A = 0, B = 0	(B) $A = 0$, $B = 1$
(C) A = 1, B = 0	(D) $A = 1$, $B = 1$
II. Fill in the blanks by choosing appropr	riate answer given in the brackets for ALL the
following questions:	$\underline{5 \times 1 = 5}$
(Wavelength, Zener diodes, Co	oulomb's law, Activity, Temperature)
16. Force between two point charges in vacu	aum is given by
17. The magnetic susceptibility of a param	nagnetic substance is inversely proportional to its

18. Resolving power of	of a microscope can be increased by decreasing the	used.
19. SI unit of	is becquerel (Bq).	
20	are used as voltage regulators.	

PART - B

III. Answer any <u>FIVE</u> of the following questions:

 $5 \times 2 = 10$

- 21. What are the factors on which capacitance of a parallel plate capacitor depends?
- **22.** Draw a neat labelled diagram of cyclotron.
- 23. State and explain Gauss's law in magnetism.
- **24.** What are eddy currents? Mention one of its uses.
- 25. List any two sources of energy loss in a transformer.
- 26. Mention any two uses of microwaves.
- 27. What is a wavefront? What is the shape of wavefront from a point source?
- 28. Give de Broglie's explanation of Bohr's angular momentum quantisation postulate.
- 29. Write any two properties of nuclear forces.

PART - C

IV. Answer any <u>FIVE</u> of the following questions:

 $5 \times 3 = 15$

- 30. Mention three basic properties of charges.
- **31.** Derive the expression for drift velocity in terms of electric field and relaxation time.
- **32.** With a circuit diagram, explain how a galvanometer can be converted into a voltmeter?
- **33.** Define the terms (i) Declination (ii) inclination and (iii) horizontal component of earth's magnetic field.
- **34.** Derive an expression for motional emf induced in a rod moving in a magnetic field.
- **35.** Draw ray diagram for the formation of image by a compound microscope. Write the expression for magnification produced by the microscope for image formed at infinity.
- **36.** Arrive at the expression for radius of n^{th} orbit of electron in a hydrogen atom.
- **37.** Calculate the mass defect and binding energy of ${}^{14}_{7}N$. *Given*: The rest masses of nitrogen nucleus, proton and neutron are 14.00307 u, 1.00783 u and 1.00867 u respectively.
- **38.** Write any three differences between p type and n type semiconductors.

PART - D

V. Answer any <u>THREE</u> of the following questions:

 $3 \times 5 = 15$

- **39.** Derive the expression for the electric field at a point outside a uniformly charged spherical shell. What is the value of the electric field inside the shell?
- **40.** Obtain the condition for balance of a Wheatstone's network using Kirchhoff's laws.

- **41.** Arrive at the expression for the force per unit length between two infinitely long straight parallel current carrying conductors. Hence define ampere.
- 42. Derive Lens maker's formula.
- **43.** (i) Define threshold frequency for photoelectric emission. (1)
 - (ii) Write any two experimental observations of photoelectric effect. (2)
 - (iii) Write Einstein's photoelectric equation and explain the terms. (2)
- **44.** (i) What is rectification?
 - (ii) Write the circuit diagram and input output waveforms for a full wave rectifier. (2)
 - (iii) Explain the working of a full wave rectifier. (2)

VI. Answer any TWO of the following questions:

 $2 \times 5 = 10$

(1)

- **45.** ABCD is a square of side 2 m. Point charges of 50 μ C, 100 μ C and 50 μ C are placed at corners A, B, C respectively. Calculate the work done in transferring a charge of 0.5 nC from D to the point of intersection of diagonals.
- **46.** Two resistors of resistance 12 Ω and 6 Ω are connected in parallel with a 12 V, 1 Ω cell.
 - (a) Calculate the equivalent resistance of the combination of resistors.
 - (b) Obtain the current through the cell.
 - (c) Find the terminal potential difference across the cell.
- **47.** A series LCR ac circuit has a pure inductor of inductance 5.0 H, a capacitor of capacitance $20~\mu\text{F}$ and a resistor of resistance $40~\Omega$. Find
 - (a) the frequency of the alternating voltage that drives the circuit into resonance.
 - (b) Sharpness of resonance and
 - (c) Bandwidth of resonance.
- **48.** In Young's double slit experiment, the distance of the screen from the double-slit is 2 m. When light of wavelength 550 nm is incident on the double-slit arrangement, fringes of width 2 mm are obtained on the screen. Determine the distance of separation between the slits. Also find the fringe width when the source of light is replaced by a source of light of wavelength 440 nm.
