Government of Karnataka

Karnataka School Examination and Assessment Board

II Year PUC Examination March - 2023

SCHEME OF VALUATION

Subject Code: 40(NS)
Subject: ELECTRONICS

$\begin{aligned} & \hline \mathrm{I} \\ & \mathrm{MCQ} \end{aligned}$	PART - A	MARKS $15 \times 1=15$
1.c)	Gate	1
2. b)	Voltage Divider biasing	1
3. a)	$180{ }^{\circ}$	1
4. b)	Amplifier	1
5. b)	Infinity	1
6. c)	Cosine Wave	1
7.d)	$\mathrm{AB}=1$	1
8. b)	Transmitter	1
9. d)	Infinity	1
10. d)	LED	1
11. a)	Pair	1
12. a)	Half Adder	1
13. a)	8 bit	1
14. c)	Logical AND	1
15. d)	4 GHz	1
II	FILL THE BLANKS	$5 \times 1=5$
16. d)	Input impedance	1
17. e)	Heat sink	1
18.c)	RC coupled	1
19. b)	Modulation index	1
20. a)	Data	1

$\begin{aligned} & \text { III. } \\ & 21 . \end{aligned}$	PART B Any five of the following Collector Base leakage current when Emitter is kept open (or) $\mathrm{I}_{\mathrm{CBO}}$ Collector Emitter leakage current when Base is kept open (or) $\mathrm{I}_{\mathrm{CEO}}$	$5 \times 2=10$
22.	 Nature of Curve Marking regions	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
23.	$\begin{aligned} & A_{v f}=\frac{A v}{1+A v \beta} A v=500, A v f=100 \\ & \beta=\frac{1}{A f}-\frac{1}{A} \\ & =\frac{1}{100}-\frac{1}{500} \\ & \beta=0.008 \quad \text { (or) } 0.8 \% \end{aligned}$	1 1
24.	$\begin{aligned} & f=78 \mathrm{~Hz}, C=220 \mathrm{nF}, R=? \\ & f=\frac{1}{2 \pi R C \sqrt{6}} \text { or } \frac{0.065}{R C} \\ & R=\frac{1}{2 \times 31.42 \times \sqrt{6} \times 78 \times 220 \times 10^{-9}}=3.785 \mathrm{k} \Omega \end{aligned}$	1 1
25.	i). Rectifier ii). AC Voltage controller iii). DC Chopper iv). Inverter (Any two each 1M)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
26.	(Pin Numbers)	1 1
27.	ALU : This unit does the arithmetic operations and also does the logical decisions Accumulator: it is a device which stores a number and which on receipt of another number, adds the two stored sum. (or) it a intermediate storage of aithmatic and logical data in CPU (or) 8 bit dedicated default storage register which is a part of ALU.	1 1

28.	Syntax error Logical error Runtime error		(Any two)	1
29.	Any two advantages of digital cell phone system. (each 1M)			2
$\begin{aligned} & \text { IV } \\ & \mathbf{3 0 .} \end{aligned}$	Any five of the following Working of n-channel JFET Diagram Case $1\left(V_{G S}=0\right)$ - $($ effect $)$ Case $2\left(\mathrm{~V}_{\mathrm{GS}}\right)$ is increased	T C		$\begin{gathered} 5 \times 2=10 \\ 1 \\ 1 \\ 1 \end{gathered}$
31.	Any three difference between positive and negative feedback (each 1 M)			3
	Positive feedback	Negative f		
	It is Regenerative feedback, gain increases	It is Degenerative feed decreases		
	Feedback signal is INPHASE with source signal Vi=Vs+Vf	Feedback signal is OU source signal Vi=Vs-V	PHASE with	
	Suitable for oscillator	Suitable for Amplifier		
32.	Any three comparison between RC and LC oscillators		(each 1 M)	3
	RC Oscillators	LC oscill		
	Resistors and capacitors are used in feed back circuit	Inductors and capacito feedback circuit	used in	
	Generates low frequency signal	Generates high frequen	nals	
	Examples are phase shift oscillators and wein bridge oscillators	Examples are Hartley oscillators	lpitt's	
33.	$\begin{aligned} & \mathrm{L}_{1}=4 \mathrm{mH}, \mathrm{~L}_{2}=2 \mathrm{mH} \text { and } \mathrm{C}=10 \mathrm{nC}, \mathrm{f}=? \\ & \begin{aligned} f & =\frac{1}{2 \pi \sqrt{L_{T} C}} \text { where } L_{T}=L_{1}+L_{2} \\ & =\frac{1}{2 \times 3.142 \times \sqrt{\left(2 \times 10^{-8}+4 \times 10^{-8}\right) \times 10 \times 10^{-9}}} \\ & =20.544 \end{aligned} \end{aligned}$			2
34.	Any three waves with meaning (or brief explanation on each wave) (each 1 M) Ground wave Sky wave Space wave etc			1 1 1
35.	Need for modulation (any three points with brief explanation) (each 1 M)			3

\begin{tabular}{|c|c|c|}
\hline 36. \& \[
\begin{aligned}
\& \alpha=60^{0}, \mathrm{~V}_{\mathrm{rms}}=230 \mathrm{~V}, \mathrm{R}=25 \Omega \\
\& \mathrm{~V}_{\mathrm{rms}}=\sqrt{2} \mathrm{~V}_{\mathrm{rms}}=385.5
\end{aligned}
\]
\[
\begin{aligned}
\mathrm{V}_{\mathrm{dc}} \& =\frac{V m}{\pi}[1+\cos \alpha]=\frac{325.2}{3.142}[1+\cos (60)] \\
\& =155.25 \mathrm{~V}
\end{aligned}
\]
\[
\mathrm{I}_{\mathrm{dc}}=\frac{V_{d c}}{R}=\frac{155.25}{25}=6.21 \mathrm{~A}
\] \& 1
1
1 \\
\hline 37. \& \begin{tabular}{l}
Logic circuit diagram \\
Truth table
\end{tabular} \& 2

1

\hline 38. \& | Block diagram of OFC |
| :--- |
| Any two application |
| (i) Used to achieve high speed data communication |
| (ii) To achieve errorless far distance communication. | \& 1

\hline
\end{tabular}

41.	Any five difference between AM and FM (each 1 M)		5
	Amplitude modulation	Frequency modulation	
	It is a process in which amplitude of the carrier varied in accordance with instantaneous voltage of the modulating signal.	It is a process in which frequency of the carrier varied in accordance with instantaneous voltage of the modulating signal.	
	It has only two side bands	It has infinite side bands	
	Area of reception is large	Area of reception is smaller than AM and which is limited to LOS	
	Bandwidth is very less (10 KHz)	Bandwidth is very high (200KHz)	
	Modulation index will be less than 1	Modulation index will be greater than 1	
42.	Pin diagram of NOR (IC 7402) Constructing NOT gate \& truth table Constructing AND gate \& truth table Constructing OR gate \& truth table Constructing XNOR gate \& truth table		11
43.	ALP to standard two hex numbers MOV, \#78H : Load 78H to A SUBB A, \# 4CH : Subtract 4CH from 78H MOV R_{0}, A : Store difference in R_{0} Verification: $\begin{array}{llr} \text { A: } 78 \mathrm{H} & 01111000 \rightarrow & 01111000 \\ \text { R1: } 4 \mathrm{CH} & 01101100 \rightarrow & 10110011 \\ & & +1 \\ & & 00101100 \end{array}$		1 1 1 1

44.

\# include <stdio.h>
Void main()
\{
int $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$, sum;
float avg;
printf("Enter the four integer number\n");
scanf("\%d \%d \%d \%d", \&p, \&q,\&r, \&s);
sum $=p+q+r+s ;$
$\operatorname{avg}=\operatorname{sum} / 4$;
printf("sum $=\% d \backslash n$ avg $=\% f \backslash n$, sum, avg);
\}
45.

Transistor CE Amplifier
Given $\mathrm{R}_{1}=45 \mathrm{~K}, \mathrm{R}_{2}=5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{C}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{E}}=1 \mathrm{k} \Omega$
$\mathrm{I}_{\mathrm{E}}=1.3 \mathrm{~mA}, \beta=100$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}=\frac{26 m \mathrm{mV}}{r_{\mathrm{e}}^{\prime}}=r_{\mathrm{e}}^{\prime}=\frac{26 \times 10^{-\mathrm{s}}}{1.3 \times 10^{-\mathrm{s}}}=20 \Omega \\
& \mathrm{Z}_{0}=\mathrm{R}_{\mathrm{c}} \| \mathrm{R}_{\mathrm{L}}=\frac{10 \mathrm{~K} \cdot 10 \mathrm{~K}}{10 \mathrm{~K}+10 \mathrm{~K}}=5 \mathrm{k} \Omega \\
& \mathrm{~A}_{\mathrm{V}}=-\frac{z_{0}}{r_{\mathrm{e}}^{\prime}}=\frac{5 \times 10^{\mathrm{s}}}{20}=-250
\end{aligned}
$$

$$
\mathrm{A}_{\mathrm{i}}=\beta=100
$$

$$
A_{P}=A_{V} \cdot A_{i}=250 \times 100=25000
$$

$$
\begin{aligned}
V_{0} & =\frac{V_{2} R_{3}}{R_{2}+R_{3}}\left[1+\frac{R_{f}}{R_{1}}\right]-\frac{R_{f}}{R}\left(V_{0_{1}}\right) \\
\text { Or } V_{01} & =V_{2}-V_{1} \\
V_{0_{1}} & =8 m V-2 m V=6 m V
\end{aligned}
$$

Stage 2: OP-AMP inverting amplifier

$$
\begin{aligned}
V_{0} & =-\frac{R_{f}}{R}\left(V_{1}\right) \\
& =\frac{-6 \times 10^{\mathrm{s}}}{3 \times 10^{\mathrm{B}}}\left(6 \times 10^{-3}\right) \\
\mathrm{V}_{0} & =-12 \mathrm{mV}
\end{aligned}
$$

47.

Given $\mathrm{m}_{\mathrm{a}}=75 \%=0.75$
$\mathrm{P}_{\mathrm{C}}=12 \mathrm{~kW}$
$\mathrm{P}_{\mathrm{T}}=$?
$\mathrm{P}_{\mathrm{S} \beta}=$?

$$
\begin{aligned}
\mathrm{P}_{\mathrm{T}} & =\mathrm{P}_{\mathrm{C}}\left[1+\frac{m_{a}^{2}}{2}\right] \\
\mathrm{P}_{\mathrm{T}} & =12 \times 10^{3}\left[1+\frac{(0.75)^{2}}{2}\right] \\
\mathrm{P}_{\mathrm{T}} & =12 \times 10^{3}[1+0.281] \\
\mathrm{P}_{\mathrm{T}} & =15.37 \mathrm{~kW} \\
\mathrm{P}_{\mathrm{T}} & =\mathrm{P}_{\mathrm{C}}+\mathrm{P}_{\mathrm{S} \beta} \\
\mathrm{P}_{\mathrm{S} \beta} & =\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{C}} \\
& =15.37 \times 10^{3}-12 \times 10^{3} \\
\mathrm{P}_{\mathrm{S} \beta} & =3.37 \mathrm{~kW}
\end{aligned}
$$

Each side hand $\mathrm{P}_{\mathrm{LS} \beta}=\mathrm{P}_{\mathrm{US} \beta}=\frac{P_{S E}}{2}$

$$
P_{L S \beta}=P_{U S \beta}=\frac{3.37 \times 10^{5}}{2}=1.68 \mathrm{KW}
$$

48.

$$
y=\sum m(0,1,4,8,9,10,11,13)+\sum d(5,6,12)
$$

$$
y=\bar{C}+A \bar{B}
$$

simplified expression using NAND only

