GOVERNMENT OF KARNATAKA

KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD

II PUC ANNUAL EXAMINATION : MARCH - 2023

Subject code: 33
SCHEME OF EVALUATION
Subject: PHYSICS

General Instructions:

1. All parts are compulsory.
2. Answers without relevant diagram / figure / circuit wherever necessary will not carry any marks.
3. Direct answers to the numerical problems without detailed solutions will not carry any marks.

11.	Snell's law of refraction invalid at an angle of incidence(i) is	
Ans	c) $\mathbf{i}=0^{\circ}$	1
12.	When a point source of light is placed at the principal focus of a thin convex lens, the shape of the emergent wave front is a) Spherical convergent wave front b) Spherical divergent wave front c) Plane wave front d) Cylindrical wave front	
Ans	c) Plane wave front	1
13.	C.J. Davisson - L.H. Germer experiment proved: a) wave nature of electrons b) particle nature of electrons c) wave nature of light d) particle nature of light	
Ans	a) wave nature of electrons	1
14.	Function of moderator in a nuclear reactor is a) to slow down fast neutrons b) to absorb the neutrons c) to reduce heat energy d) to control the chain reaction	
Ans	a) to slow down fast neutrons	1
15.	Energy gap $\left(\mathrm{E}_{\mathrm{g}}\right)$ between the valence band and the conduction band for conductor is a) $\mathrm{Eg}=0$ b) $\mathrm{E}_{\mathrm{g}}<3 \mathrm{eV}$ c) $\mathrm{E}_{\mathrm{g}}>3 \mathrm{eV}$ d) $\mathrm{E}_{\mathrm{g}}=3 \mathrm{eV}$	
Ans	a) $\mathbf{E g}=0$	1
	ill in the blanks by choosing appropriate answer given in the brackets for ALL e following questions: $5 \times 1=5$ Curie temperature, electric dipole, transverse, isotopes, zener diode)	
16.	A pair of equal and opposite point charges q and -q separated by a distance 2 a is an	
Ans	electric dipole	1
17.	Temperature of transition from ferromagnetism to paramagnetism is called	
Ans	Curie temperature	1
18.	Phenomenon of polarisation proves the ___ nature of light waves.	
Ans	transverse	1
19.	Nuclei having same atomic number and different mass number are called	
Ans	isotopes	1
20.	\ldots __ is used as voltage regulator.	
Ans	Zener diode	1
	PART - B Answer any FIVE of the following questions: $5 \times 2=$	
21.	On what factors does the capacitance of a parallel plate capacitor depend?	
Ans	(i) Area of plate (ii) distance between the plates (iii) dielectric constant or dielectric medium between the plates (Any two, one mark each)	1 1
22.	State and explain Ampere's circuital law.	
Ans	Statement: The line integral of the magnetic field around a closed loop is equal to μ_{0} times the current enclosed by the loop. Explanation: $\oint \overrightarrow{\mathbf{B}} . \mathrm{d} \overrightarrow{\mathbf{l}}=\mu_{0} \mathbf{I} ; \mathrm{B}$ - Magnetic field, dl - line element/elemental length and $\mathrm{I}-$ current	1 1
23.	Define magnetic dip and declination at a place.	
Ans	Magnetic dip: The angle between earth's magnetic field and the horizontal in the magnetic meridian at a place. Declination: The angle between the magnetic meridian and geographic meridian at a place. OR Declination is the angle between the true geographic north and the north shown by a compass needle.	1

24.	What are eddy current? Mention any one use of it.	
Ans	When bulk pieces of conductors/metals are subjected to changing magnetic flux/field, induced currents are produced in them. These currents are called eddy currents. Uses: Magnetic braking in trains, electromagnetic damping, Induction furnace, electric power meters, speedometer of vehicles, dead beat galvanometer (any one)	1 1
25.	Write two sources of energy loss in a transformer.	
Ans	- Flux leakage/ Magnetic loss. - Resistance of the windings/coils OR Copper loss. - Eddy currents loss. - Hysteresis loss.	1 1
26.	What is displacement current? Give the expression for it.	
Ans	The current due to time varying electric flux (or field) is called displacement current. Displacement current $=\varepsilon_{0} \frac{d \phi_{\mathrm{E}}}{\mathrm{dt}} \quad$ OR $\quad \mathrm{i}_{\mathrm{d}}=\varepsilon_{0} \frac{\mathrm{~d} \phi_{\mathrm{E}}}{\mathrm{dt}} \quad$ OR $\quad \mathrm{I}_{\mathrm{d}}=\varepsilon_{0} \frac{\mathrm{~d} \phi_{\mathrm{E}}}{\mathrm{dt}}$	1 1
27.	Mention the expression for limit of resolution of a telescope and explain the terms.	
Ans	$\text { Limit of resolution }(\Delta \theta \text { or } \mathrm{d} \theta)=\frac{0.61 \lambda}{\mathrm{a}} \quad \text { OR } \quad \Delta \theta=\frac{1.22 \lambda}{2 \mathrm{a}} \quad \text { OR } \quad \Delta \theta=\frac{1.22 \lambda}{\mathrm{D}}$ where λ the wavelength of light and 2 a or D is the diameter of the objective. a is the radius of the aperture of objective.	1 1
28.	Name the spectral series of hydrogen atom lies in a) ultraviolet region and b) visible region of electromagnetic spectrum.	
Ans	a) Ultraviolet region : Lyman series b) Visible region : Balmer series	1 1
29.	Give any two differences between nuclear fission and nuclear fusion.	
Ans	Nuclear fission Nuclear fusion - The process in which heavy nucleus splits into two nuclei of comparable masses with release of energy is known as fission. \quadThe process in which two lighter nuclei combine to form a single nucleus with the release of energy is known as fusion.	1 1
	PART - C Answer any FIVE of the following questions: $5 \times 3=15$	
30.	Write any three properties of electric field lines.	
Ans	- Electric field lines start from positive charge and end at negative charge. For a single charge, they may start or end at infinity. - In a charge-free region, electric field lines are continuous curves without any break. - Two field lines can never cross each other (never intersect each other). - A tangent drawn to a field line at any point gives the direction of electric field at that point. - Electrostatic field lines do not form any closed loops. (any three)	1 1 1

31.	Draw a labelled Wheatstone's bridge and hence write the balancing condition in terms of resistances.				
Ans			Circuit diag Labelling t Balancing $\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=\frac{\mathrm{R}_{4}}{\mathrm{R}_{3}}$ Note: Any and any oth balancing resistors sh	ram e four resistors and galvanometer ondition: $\frac{R_{2}}{R_{4}}=\frac{R_{1}}{R_{3}} \quad \text { OR } \quad \frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}}$ other symbols used for resistors like $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ er order should also be considered and ondition should be in accordance with the own in the circuit.	1
32.	How would you convert a galvanometer into an ammeter? Explain.				
Ans		R	A galvanometer can be converted into a ammeter by connecting a low resistance in parallel with it. Diagram OR expression R_{G} - resistance of galvanometer G . r_{s} - shunt resistance in parallel with the galvanometer. OR The resistance of the arrangement $=\frac{R_{G} r_{s}}{R_{G}+r_{s}}$ OR Shunt resistance: $r_{s}=\frac{I_{G} R_{G}}{I-I_{G}} \quad$ OR $\quad S=\frac{I_{g} G}{I-I_{g}}$		1 1 1
33.	Write three differences between diamagnetic and paramagnetic materials.				
Ans		Diamagnetic substan		Paramagnetic substances	
	1	These are repelled by a magnet.		These are attracted by a magnet.	1
	2	The magnetic susceptibility is neg	ve, $\chi<0$	The magnetic susceptibility is positive, $\chi>0$	1
	3	The susceptibility (or permeability magnetisation) does not depend on temperature. OR They do not obey Curie's law		The susceptibility (or permeability or magnetisation) depends on the temperature. OR They obey Curie's law.	1
	4	Magnetic field lines are expelled diamagnetic substance is placed in magnetic field.	t, when the an external	Magnetic field lines enter inside when the diamagnetic substance placed in an external magnetic field.	
	5	Relative permeability is less than	, $\mu_{\mathrm{r}}<1$	Relative permeability is more than one, $\mu_{\mathrm{r}}>1$.	
	(any three of these OR any other correct difference)				

V. Answer any THREE of the following questions:
39. State Gauss's law in electrostatics. Derive an expression for the electric field at a point due to an infinitely long thin charged straight wire using Gauss's law.

Labelled diagram

The electric field is everywhere radial, flux through the two ends of the cylindrical Gaussian surface is zero.
Let $\boldsymbol{l} \rightarrow$ length of the cylinder and $\lambda \rightarrow$ linear charge density The surface area of the curved part of the cylinder is $2 \boldsymbol{\pi} \boldsymbol{r} \boldsymbol{l}$. Magnitude of \mathbf{E} is same through the curved surface of the cylinder. The electric flux ϕ through the Gaussian surface is

$$
\begin{equation*}
\phi=\text { Electric field } \times \text { area }=\mathrm{E} \times 2 \pi \mathrm{rl} \tag{1}
\end{equation*}
$$

From Gauss's law, electric flux: $\phi=\frac{\mathrm{q}}{\varepsilon_{0}}$
The charge enclosed by the Gaussian surface: $\mathrm{q}=\lambda l$ then the flux: $\phi=\frac{\lambda \ell}{\varepsilon_{0}}$.
From eq (1) and eq(2), $\mathrm{E} \times 2 \pi \mathrm{r} l=\frac{\lambda \ell}{\varepsilon_{0}}$
Thus, the electric field: $E=\frac{\lambda}{2 \pi \varepsilon_{0} r}$
40. Derive the expression for conductivity of a material: $\sigma=\frac{\mathrm{ne}^{2} \tau}{\mathrm{~m}}$: where the terms have their usual meaning.

Diagram OR \quad Explanation as given below:
Volume $=A(\Delta x)=A v_{d}(\Delta t)$

Let ' \mathbf{n} ' be the number of free electrons per unit volume (number density of free electrons) in the material, then there are $\mathbf{n} \mathbf{v}_{\mathbf{d}}(\mathbf{\Delta t}) \mathbf{A}$ electrons in this volume.
The electrons drift opposite to the electric field direction.

$$
\mathrm{A} \rightarrow \text { area of cross section and } \mathrm{v}_{\mathrm{d}} \rightarrow \text { drift velocity. }
$$

The amount of charge crossing the area A to the left in time Δt is, $\quad I(\Delta t)=n e A v_{d}(\Delta t)$
OR Current: $I=n e A v_{d}$ \qquad
Magnitude of drift velocity of electrons is $v_{d}=\left(\frac{e \tau}{m}\right) E$
$\mathrm{e} \rightarrow$ magnitude of electron charge. $\quad \tau \rightarrow$ relaxation time.
$\mathrm{E} \rightarrow$ electric field. $\quad \mathrm{m} \rightarrow$ mass of electron.
Substituting v_{d} from eq(2) in (1), $I=n e A\left(\frac{e \tau}{m}\right) E=\left(\frac{n e^{2} \tau A}{m}\right) E$
Thus, current density: $j=\frac{I}{A}=\left(\frac{n e^{2} \tau}{m}\right) E$
Also, $\mathrm{j}=\sigma \mathrm{E}$
Thus, from eq(2) and eq(3), conductivity: $\sigma=\frac{\mathrm{ne}^{2} \tau}{\mathrm{~m}}$

41.	Obtain the expression for the force between two straight long parallel conductors carrying current. Hence define "ampere".	
Ans	Definition of ampere: One ampere is that steady current which, when maintained in each of the two very long, straight, parallel conductors of negligible cross-section and placed one metre apart in vacuum (free space/air), would produce a force of $\mathbf{2 \times 1 0 ^ { - 7 }}$ newton per metre length on each other. (Note: Any other equivalent correct definition with necessary key terms should be considered)	1 1 1 1 1 1 1
42.	Arrive at the expression for refractive index of the material of the prism in terms of angle of minimum deviation and angle of the prism.	
Ans	Labelled ray diagram. In the quadrilateral AQNR, two of the angles (at the vertices Q and R) are right angles. Therefore, the sum of the other angles of the quadrilateral is 180°. $\angle \mathrm{A}+\angle \mathrm{QNR}=180^{\circ}$ In the $\triangle \mathrm{QNR}$, $\mathrm{r}_{1}+\mathrm{r}_{2}+\angle \mathrm{QNR}=180^{\circ}$ Comparing the above two equations, $\mathrm{A}=\mathrm{r}_{1}+\mathrm{r}_{2}$ The total deviation (δ) is the sum of the deviations at the two faces, $\begin{align*} & \delta=\left(\mathrm{i}-\mathrm{r}_{1}\right)+\left(\mathrm{e}-\mathrm{r}_{2}\right) ; \quad\left(\text { Using } \mathrm{A}=\mathrm{r}_{1}+\mathrm{r}_{2}\right) \\ \Rightarrow \delta & \boldsymbol{\delta}=\mathbf{i}+\mathbf{e}-\mathbf{A} \ldots(\mathbf{2}) \end{align*}$ At the minimum deviation position, $\delta=D_{m}, i=e$ and $r_{1}=r_{2}$. Eq(1) becomes $\mathrm{A}=2 \mathrm{r}_{1} \Rightarrow \mathbf{r}_{\mathbf{1}}=\mathbf{A} / \mathbf{2}$ and eq(2) becomes $\mathrm{D}_{\mathrm{m}}=2 \mathrm{i}-\mathrm{A}$ or $\mathbf{i}=\left(\mathbf{A}+\mathbf{D}_{\mathbf{m}}\right) / \mathbf{2}$. From Snell's law, refractive index: $\mathrm{n}_{21}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}=\frac{\sin i}{\sin r_{1}}=\frac{\sin \left(\frac{A+D_{m}}{2}\right)}{\sin \left(\frac{A}{2}\right)}$ OR $\mathrm{n}=\frac{\sin \left(\frac{A+D_{m}}{2}\right)}{\sin \left(\frac{A}{2}\right)}$	11

43. a) What is meant by photo electric effect?
b) Define work function.
c) Write the three experimental observations of photo electric effect.

Ans a) The phenomenon of emission of electrons from a metal surface, when light of suitable frequency (or wavelength or energy) incident on it, is called as photo-electric effect.
b) Work function: The minimum energy required to remove an electron from the metal surface.

OR The minimum energy required by an electron to escape from the metal surface.
c) Experimental observations of photoelectric effect:
(any three)

- Photo-electric effect is instantaneous process.
- For a given photosensitive material, there exists a certain minimum cut-off frequency of the incident light (called threshold frequency), below which no photoelectron emission takes place.
- For a given material and radiation above the threshold frequency, the photo-current is directly proportional to the intensity of incident light.
- Above the threshold frequency, the saturation current is proportional to the intensity of incident radiation whereas the stopping potential is independent of its intensity.
- Above the threshold frequency, the stopping potential (or the maximum kinetic energy of the emitted photoelectrons) increases linearly with the frequency of the incident light.

44. a) What is rectification?
b) Draw the circuit diagram and input-output waveforms of a full wave rectifier.
c) Explain the working of a full wave rectifier.

Ans a) The process of conversion ac into dc is called rectification.
b) Circuit diagram

Waveform:

c) During positive half cycle of AC input the diode D_{1} is forward biased and conducts, while D_{2} reverse biased, does not conduct. So the output current flows through R_{L} as shown in the figure. During negative half cycle of AC input D_{2} is forward biased and conducts while D_{1} is reverse biased, does not conduct. Again the current flows through R_{L} as shown in the figure.
Thus there is current flow through R_{L} over the complete cycle of AC input in the same direction.

45. | Charges $2 \mu \mathrm{C}, 4 \mu \mathrm{C}$ and $6 \mu \mathrm{C}$ a |
| :--- |
| of a square ABCD of side X |
| fourth corner so that the tota |

| Figure OR Explanation | 1 |
| :--- | :--- | :--- |

Distance of centre (O) from each corner: $\mathrm{AO}=\mathrm{BO}=\mathrm{CO}=\mathrm{DO}$ Let $\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}$ be the point charges at four corners A, B, C and D respectively. The total potential at the centre due to the configuration four charges is zero. $\quad V=0$

Formula: Electric potential $V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}$
OR Total potential $V=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{\mathrm{q}_{1}}{A O}+\frac{\mathrm{q}_{2}}{\mathrm{BO}}+\frac{\mathrm{q}_{3}}{\mathrm{CO}}+\frac{\mathrm{q}_{4}}{D O}\right)=0$
$\Rightarrow\left(\frac{\mathrm{q}_{1}+\mathrm{q}_{2}+\mathrm{q}_{3}+\mathrm{q}_{4}}{\mathrm{AO}}\right)=0 \quad \Rightarrow \mathrm{q}_{1}+\mathrm{q}_{2}+\mathrm{q}_{3}+\mathrm{q}_{4}=0$
$\mathrm{q}_{4}=-\left(\mathrm{q}_{1}+\mathrm{q}_{2}+\mathrm{q}_{3}\right)=-(2+4+6) \mu \mathrm{C}$
$\mathrm{q}_{4}=-12 \mu \mathrm{C}$
Thus a charge of ' $\mathbf{- 1 2 \mu} \mathbf{C}$ ' must be placed at fourth corner D to have zero potential at the centre.
Note: Any other correct detailed method/solution should also be given full marks.
46.

Three resistors $2 \Omega, 3 \Omega$ and 6Ω are combined in parallel. What is the total resistance of the combination? The combination is connected to a battery of emf 2 V and negligible internal resistance. Determine the current through each resistor and total current drawn from the battery.

Ans
Given $\mathrm{R}_{1}=2 \Omega, \mathrm{R}_{2}=3 \Omega, \mathrm{R}_{3}=6 \Omega$, emf: $\varepsilon=2 \mathrm{~V}, \mathrm{r} \approx 0, \mathrm{R}_{\mathrm{P}}=$?, $\mathrm{I}_{1}=$?, $\mathrm{I}_{2}=$?, $\mathrm{I}_{3}=$?, $\mathrm{I}=$?, As Internal resistance is negligible, $\mathrm{r} \approx 0$ then terminal p.d. : $\mathrm{V} \approx \varepsilon=2 \mathrm{~V}$
Total (effective) resistance R_{P} is given by, $\frac{1}{\mathrm{R}_{\mathrm{P}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$
Total resistance of the combination: $\mathrm{R}_{\mathrm{p}}=1 \Omega$
Current through R_{1} is $\mathrm{I}_{1}=\varepsilon / \mathrm{R}_{1}=2 / 2=1 \mathrm{~A}$
OR $\quad \mathrm{I}_{1}=\mathrm{V} / \mathrm{R}_{1}=2 / 2=1 \mathrm{~A}$
Current through R_{2} is $\mathrm{I}_{2}=\varepsilon / \mathrm{R}_{2}=2 / 3 \mathrm{~A}$
OR $\quad \mathrm{I}_{2}=\mathrm{V} / \mathrm{R}_{2}=2 / 3 \mathrm{~A}$
Current through R_{3} is $\mathrm{I}_{3}=\varepsilon / \mathrm{R}_{3}=2 / 6=1 / 3 \mathrm{~A}$
OR $\quad I_{3}=V / R_{3}==1 / 3 \mathrm{~A}$
Total current drawn from the battery is $\mathrm{I}=1+2 / 3+1 / 3=2 \mathrm{~A}$
OR Total current drawn from the battery is $\mathrm{I}=\frac{\varepsilon}{\mathrm{R}_{\mathrm{P}}+\mathrm{r}}=\frac{2}{1+0}=2 \mathrm{~A}$
47. A sinusoidal voltage of peak value 283 V and frequency 50 Hz is applied to a series LCR circuit in which $R=3 \Omega, L=25.48 \mathrm{mH}$ and $\mathrm{C}=796 \mu \mathrm{~F}$.
Calculate: a) impedance of the circuit
b) the phase difference between the voltage across the source and the current.

Ans
Given, Peak voltage : $\mathrm{v}_{\mathrm{m}}=283 \mathrm{~V}, \mathrm{R}=3 \Omega, \mathrm{~L}=25.48 \mathrm{mH}, \mathrm{C}=796 \mu \mathrm{~F}, \mathrm{Z}=$? , $\phi=$?
a) $\mathrm{X}_{\mathrm{L}}=2 \pi v \mathrm{~L}=2 \times 3.14 \times 50 \times 25.48 \times 10^{-3}=8 \Omega$

$$
\mathrm{X}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{vC}}=\frac{1}{2 \times 3.14 \times 50 \times 796 \times 10^{-6}}=4 \Omega
$$

Impedance: $\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}\right)^{2}}$
$Z=\sqrt{9+(4-8)^{2}}=\sqrt{9+16}=5 \Omega$
b) $\tan \phi=\frac{\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}}{\mathrm{R}} \quad$ OR $\quad \phi=\tan ^{-1}\left(\frac{\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}}{\mathrm{R}}\right)$

Phase difference : $\phi=\tan ^{-1}\left(\frac{4-8}{3}\right)=\tan ^{-1}\left(\frac{-4}{3}\right)=\tan ^{-1}(-1.3333) \approx-53^{\circ}$
Alternatively, $\quad \cos \phi=\frac{\mathrm{R}}{\mathrm{Z}} \Rightarrow \phi=\cos ^{-1}\left(\frac{\mathrm{R}}{\mathrm{Z}}\right)=\cos ^{-1}\left(\frac{3}{5}\right) \approx 53^{\circ}$
Note : Full marks should be awarded for taking $Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$ \& getting $Z=5 \Omega$ and also for taking $\phi=\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right)=\tan ^{-1}\left(\frac{4}{3}\right) \approx 53^{\circ}$
48. Two narrow slits in Young's double slit experiment are 0.18 mm apart. When they are illuminated by a monochromatic light, fringes of width 2.7 mm are obtained on a screen 0.8 m away. Find the wavelength of light used. If the source is replaced by another source of wavelength 450 nm , find the change in the fringe width.

Ans Given $\mathrm{d}=0.18 \mathrm{~mm}=0.18 \times 10^{-3} \mathrm{~m}, \beta=2.7 \mathrm{~mm}=2.7 \times 10^{-3} \mathrm{~m}, \mathrm{D}=0.8 \mathrm{~m}$
Fringe width : $\beta=\frac{\lambda \mathrm{D}}{\mathrm{d}} \quad$ OR $\quad \lambda=\frac{\beta \mathrm{d}}{\mathrm{D}}$
$\lambda=\frac{2.7 \times 10^{-3} \times 0.18 \times 10^{-3}}{0.8}$
Wavelength of light: $\lambda=0.6075 \times 10^{-6} \mathrm{~m}$ OR 607.5 nm
New fringe width : $\beta^{\prime}=\frac{450 \times 10^{-9} \times 0.8}{0.18 \times 10^{-3}}=2000 \times 10^{-6} \mathrm{~m}=2 \mathrm{~mm}$

Change in fringe width: $\Delta \beta=\beta-\beta^{\prime}=2.7 \mathrm{~mm}-2 \mathrm{~mm}=0.7 \mathrm{~mm}$
OR change in fringe width $\Delta \beta=\beta^{\prime}-\beta=2 \mathrm{~mm}-2.7 \mathrm{~mm}=-0.7 \mathrm{~mm}$ is also considered. If the change in fringe width is calculated directly without β^{\prime} calculation, then also full marks should be awarded as follows.
$\Delta \beta=\frac{\left(607.5 \times 10^{-9}-450 \times 10^{-9}\right) \times 0.8}{0.18 \times 10^{-3}}$
$\Delta \beta=700 \times 10^{-6} \mathrm{~m} \quad$ OR $\quad 0.7 \mathrm{~mm}$
Note: Any other alternate correct method/answer should be considered.

