

GOVERNMENT OF KARANATAKA KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD II Year PUC Supplementary Examination May/June – 2023 Scheme of Evaluation

	Subject: Statistics Subject Code: 31		1
Q. No.	SECTION - A		Marks
I. 1	b) 25		1
2	b) 100		1
3	c) Mean = Variance		1
4	b) Type I-Error		1
5	d) 0		1
II. 6	i) Infant	e) Child aged less than one year	1
	ii) Current year weight	a) Paasche's price index number	1
	iii) Bernoulli Distribution	b) Range: 0,1	1
	iv) Parameter	c) Population constant	1
	v) Least cost entry method	d) Transportation problem	1
III.7	Ideal		1
8	6		1
9	Rejected		1
10	np		1
11	Saddle		1
IV.12	Fecundity refers to "the capacity of	f woman to bear children".	1
13	Retail (Consumer) price		1
14	War/flood/strike	(Any such related factor)	1
15	1/2		1
16	A set of real values of x_1, x_2, \ldots, x_n with a solution to L.P.P.	which satisfy the constraints AX ($\leq = \geq$) b	1

SECTION-B

V.17	$L_{01}^{P} = \frac{\sum p_{1}q_{0}}{\sum p_{0}q_{0}} \times 100 = 120$	1+1
18	Prosperity, Decline, Depression, Recovery	1+1
19	Binomial expansion method, Newton's advancing difference method	1+1
20	Mean = $np = 2$	1
	Variance = $npq = 1.2$	1
21	One tailed test is a test of statistical hypothesis, where the rejection region will be located at only one tail of the probability curve. Two tailed test is a test of statistical hypothesis, where the rejection	1
	regions will be located at both the tails of the probability curve.	1
22	S. $E(p) = \sqrt{\frac{PQ}{n}} = 0.0571$	1+1
23	LCL = $\lambda' - 3\sqrt{\lambda'}$, UCL = $\lambda' + 3\sqrt{\lambda'}$	1+1
24	$Q^0 = \sqrt{\frac{2C_3R}{C_1}} = \sqrt{\frac{2(50)(3600)}{4}} = 300 \text{ units/cycle.}$	1+1

SECTION - C

VI.25	ASFR formula $\underline{\text{or}} \frac{1000}{50000} \times 1000$: 20, 110, 174, 125, 30, 8, 3: 470	1+2
	$TFR = i \sum ASFR = 5 \times 470 = 2350.$	1+1
26	1) Defining (stating) the purpose of the index number.	
	2) Selection of base period.	_
	4) Obtaining price quotations	5 (1 mark
	5) Choice of an average.	each)
	6) Selection of weights.	
	7) Selection of suitable formula. (Any Five)	
27	$p_0q: 80, 300, 675, 1250, 650: \sum p_0q = 2955$	1
	$p_1q: 160, 360, 900, 2000, 975: $	1
	$P_{01}^{K} = \frac{\sum p_{1}q}{\sum p_{2}q} \times 100 = 148.73,$	1+1
	There is 48.73% increase in the price of items in the current year.	1
28	Year(Position):2000 2001 2002 2003 2004 2005 2006 2007 2008 2009	1
	3Y.M.Sums : - 54 60 66 75 87 101 114 129 -	2
	Trend values : - 18 20 22 25 29 33.67 38 43 -	2
29	Formula + Substitution + Ans ($y_4 - 4y_3 + 6y_2 - 4y_1 + y_0 = 0 \Rightarrow y_2 = 6.25$)	1+1+1
	Formula + Ans $(y_5 - 4y_4 + 6y_3 - 4y_2 + y_1 = 0 \implies y_5 = 23.75)$	1+1
30	$\lambda = 2, p(x) = \frac{e^{-\lambda}\lambda^{x}}{1}, X = 0, 1, 2,$	1
	(i) $r(r - 2) = \frac{e^{-2}2^3}{e^{-2}2^3} = 0.1804$	1+1
	(i) $p(x - 5) = \frac{1}{3!} = 0.1804$ (ii) $p(x < 2) = p(0) + p(1) = e^{-\lambda} + 2 e^{-\lambda} = 0.4059$	1+1
31	Mean = $\frac{na}{n} = 0.75$	1+1
	$V_{a+b} = \frac{nab(a+b-n)}{1} = 0.5022$	
	$\frac{v_{a11a11cc} - \frac{1}{(a+b)^2(a+b-1)} - 0.5055}{(a+b)^2(a+b-1)} = 0.5055$	1+1+1
32	H ₀ : The average weight of the school children is 30kg ($\mu = 30$) and H ₁ : $\mu < 30$.	1
	Test statistic $Z_{cal} = \frac{\pi \mu}{\sigma / \sqrt{n}} = \frac{25 - 36}{5 / \sqrt{64}} = -1.6$	1+1+1
	k = -2.33, Here, Z_{cal} lies in acceptance region. \therefore accept H_0	1
33	H ₀ : Coaching does not show an improvement and H ₁ : $\mu_1 < \mu_2$.	1
	$d = x_1 - x_2$: -12, 2, -10, -9, -5 : -34 = $\sum d$	
	d^2 : 144, 4, 100, 81, 25 : 354 = $\sum d^2$	
	Here, $\bar{d} = \frac{\Sigma d}{n} = \frac{-34}{5} = -6.8$ and $s_d = \sqrt{\frac{\Sigma d^2}{n} - (\frac{\Sigma d}{n})^2} = 4.9558$	1
	Test statistic $t_{cal} = \frac{\overline{d}}{1 - (\sqrt{n-1})^2} = -2.7443$	1+1
	d.f = 4, k = -2.13, Here, t_{cal} lies in rejection region. \therefore reject H ₀	1
34	$\bar{p} = \frac{\sum d}{nk} = \frac{28}{1000} = 0.028, \therefore \text{ CL} = n\bar{p} = 2.8$	1
	U.C.L = $n\bar{p} + 3\sqrt{n\bar{p}\bar{q}} = 2.8 + 3\sqrt{100(0.028)(0.972)} = 7.7492$	1+1
	L.C.L = $n\bar{p} - 3\sqrt{n\bar{p}\bar{q}} = 2.8 - 3\sqrt{100(0.028)(0.972)} = -2.1492 \approx 0$	1+1
35	$X_{11} = 50, X_{12} = 10, X_{22} = 70, X_{33} = 80.$	3
	$T C = \sum C_{ij} X_{ij} = 8(50) + 7(10) + 8(70) + 5(80) = 1430$	2
36	Row minimums (1, 0, 4)/Column maximums (7, 5, 4, 5)	1
	Columns maxima 4/Row minima 4	
	Maximin = Minimax = 4 = Value of the game	1+1
1	Dest strategies are A ₃ , B ₃	

SECTION - D

VII.37	ASDR formula / showing one calculation	1	
	A : 9, 4, 10, 30	1	
	PA : 18000, 12000, 60000, 120000 : $\Sigma PA = 2,10,000$	1	
	B : 10, 5, 12, 20	1	
	$PB: 20000, 15000, 72000, 80000: \Sigma PB = 1,87,000$	1	
	$\Sigma P = 15,000$, STDR formula		
	STDR(A) = 14, STDR(B) = 12.47 Comment: Town B is more healthier.	1+1+1	
38	p_1q_0 : 90, 80, 50, 150 : $\sum p_1q_0$ = 370	1	
	$p_0q_0: 60, 60, 150: \sum p_0q_0= 330$	1	
	$p_1q_1: 60, 100, 100, 125 : \sum p_1q_1 = 385$	1	
	p_0q_1 : 40, 75, 120, 125 : $\sum p_0q_1 = 360$	1	
	$P_{01}^{ME} = \frac{1}{2} \left(\frac{\sum p_1 q_0}{\sum p_0 q_0} + \frac{\sum p_1 q_1}{\sum p_0 q_1} \right) \times 100 = \frac{1}{2} \left(\frac{370}{330} + \frac{385}{360} \right) \times 100 = 109.53,$	3	
	$P_{01}^{F} = \left(\sqrt{\frac{\sum p_{1}q_{0}}{\sum p_{0}q_{0}} \times \frac{\sum p_{1}q_{1}}{\sum p_{0}q_{1}}}\right) \times 100 = \left(\sqrt{\frac{370}{330} \times \frac{385}{360}}\right) \times 100 = 109.5$	3	
39	$\sum y = 630, \sum x = 0, \sum x^2 = 28, \sum xy = 56, n = 5$	Table-4	
	$a = \frac{\sum y}{n} = 90$ and $b = \frac{\sum xy}{\sum x^2} = 2$	1+1	
	∴ The trend line is, Y = 90 + 2 X, Trend values: 82, 84, 86, 90, 92, 94, 96		
	\widehat{Y}_{2008} = 98 thousand tones.	1	
40	N = 256, n = 5, np = $\frac{\sum fx}{N} = \frac{640}{256} = 2.5$, p = $\frac{np}{n} = \frac{2.5}{5} = 0.5 \Rightarrow q = 0.5$	1	
	$P(x) = nC_x(p)^x(q)^{n-x}, T(0) = N \times P(0) = 256 \times q^n = 256 \times (0.5)^5 = 8$	1+1	
	Remaining freqs are calculated by: $T(x) = \frac{n+1-x}{x} \frac{p}{q} T(x+1)$; Freqs: 8, 40, 80, 80, 40, 8	2	
	H_0 : B.D is a good fit and H_1 : B.D is not a good fit.	1	
	Test Statistic, $\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i} = 149.1375$	1+1	
	d.f = 4, $k_2 = 13.3$ Here, $\chi^2 > k_2 \therefore$ Reject H_0 i.e., B.D is not a good fit.	1+1	
SECTION - E			
	SECTION - E		

VIII.41	$\mu = 64, \sigma = 2, \ Z\left(=\frac{x-\mu}{\sigma} = \frac{x-64}{2}\right)$ is a SNV	
	$P\left(\frac{x-\mu}{\sigma} \ge \frac{60-64}{2}\right) = P(Z \ge -2) = 0.9772$	1+1
	$P\left(\frac{x-\mu}{\sigma} < \frac{66-64}{2}\right) = P(Z < 1) = 1 - 0.1587 = 0.8413$	1+1
42	H ₀ : The difference between population proportions is not significant & H ₁ : $P_1 \neq P_2$	1
	$P = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2} = 0.3, Q = 0.7$	1
	Test Statistic, $Z_{cal} = \frac{p_1 - p_2}{\sqrt{PQ(\frac{1}{n_1} + \frac{1}{n_2})}} = \frac{-0.06}{0.0561} = -1.069$	1+1
	$k = -1.96$, Here - $k < Z_{cal} < k$ \therefore Accept H ₀ i.e., The difference between population proportions is not significant.	1
43	H ₀ : The vaccine is not effective in controlling the tuberculosis.	
	H ₁ : The vaccine is effective in controlling the tuberculosis.	1
	$v^2 = \frac{N(ad - bc)^2}{1} = \frac{60(12 \times 6 - 26 \times 16)^2}{10} = 9.48$	1+1+1
	$x_{cal} = (a+b)(c+d)(a+c)(b+d) = 38 \times 22 \times 28 \times 32$	
	$k_2 = 6.65 \chi^2_{cal} > k_2 \therefore$ reject H ₀ , The vaccine is effective in controlling the tuberculosis.	1
44	$P - S_n : 2000, 2500, 3000, 3500, 4000$	1
	ΣC_i : 100, 300, 630, 1140, 2000	1
	T_n : 2100, 2800, 3630, 4640, 6000	1
	A(n) : 2100, 1400, 1210, 1160 , 1200	1
	Minimum annual average cost is Rs.1160. \therefore Optimal replacement period is 4th year.	1