GOVERNMENT OF KARANATAKA
KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD
II PU Statistics Scheme of Valuation March-2023

Q. No.	SECTION - A		Marks
I. 1	c) Demography		1
2	d) 170		1
3	b) Mean > Variance		1
4	a) Point estimation		1
5	a) Equal to m $+\mathrm{n}-1$		1
II. 6	a) Method of collecting vital statistics	iv) Census enumeration	1
	b) $\mathrm{P}_{01} \times \mathrm{P}_{10}$	i) Time reversal test	1
	c) $\mathrm{Z}_{1}^{2}+\mathrm{Z}_{2}^{2}$	v) Chi-square	1
	d) Function of sample values	ii) Statistic	1
	e) Model-II	iii) Shortages are allowed	1
III. 7	Geometric mean		1
8	5		1
9	Sample mean		1
10	Chance causes		1
11	First quadrant		1
IV. 12	Size of the cohort is radix		1
13	Current year price (p_{1})		1
14	Historigram		1
15	0		1
16	$\sum \mathrm{a}_{\mathrm{i}} \neq \sum \mathrm{b}_{\mathrm{j}}$ (The sum of availability is not equals to the sum of requirement) OR $\sum a_{i}=\sum b_{j}$, If this condition is violated the T.P. is said to be unbalanced.		1

SECTION- B

V. 17	Base period should be economically stable. The base period should not be too distant from the given period.	1 1
18	$\sum(\mathrm{Y}-\widehat{\mathrm{Y}})=0$ and $\sum(\mathrm{Y}-\widehat{\mathrm{Y}})^{2}$ is the least.	$1+1$
19	Interpolation is the technique of estimating the value of the dependent variable(Y) for any intermediate value of the independent variable(X). Extrapolation is the technique of estimating the value of Y for any value of X which is outside the range of the given series.	1
20	$\mathrm{X}: \quad 0 \quad 1 \quad:$ Total $\mathrm{p}(\mathrm{x}): 3 / 5 \quad 2 / 5: \quad 1$	1
21	S. E(p) $=\frac{\sigma}{\sqrt{n}}=2$	1
22	The error that occurs by rejecting null hypothesis when it is actually true is called Type IError. The error that occurs by accepting null hypothesis when it is actually not true is called Type II Error.	1
23	LCL $=\overline{\mathrm{X}}^{\prime}-\mathrm{A} \sigma^{\prime}=25-1.5(2)=22$	$1+1$
24	$\mathrm{Q}^{0}=\sqrt{\frac{2 \mathrm{C}_{3} \mathrm{R}}{\mathrm{C}_{1}}}=\sqrt{\frac{2(50)(200)}{2}}=100$ units/cycle.	$1+1$

VI. 25	WSFR formula or $\frac{320}{8000} \times 1000: 40,60,90,100,69,30,11: 400$ GRR $=\mathrm{i} \sum \mathrm{WSFR}=5 \times 400=2000$.	$\begin{aligned} & 1+2 \\ & 1+1 \end{aligned}$
26	$\begin{array}{cccccc} \hline P=\frac{\mathrm{p}_{1}}{\mathrm{p}_{0}} \times 100 \text { or } \frac{25}{20} \times 100: & 125, & 120, & 83.33, & 80 & : \text { Total } \\ \log \mathrm{P} & : 2.0969 & 2.0792 & 1.9208 & 1.9031 & : 8 \\ \text { Formula, Ans }= & 100 \end{array}$	$\begin{gathered} 1+1 \\ 1 \\ 1+1 \\ \hline \end{gathered}$
27	Consumer price index number is the index number of the cost met by a specified class of consumers in buying a 'basket of goods and services'. 1. Defining purpose and scope. 2. Conducting family budget enquiry and selecting the weights. 3. Obtaining price quotations. 4. Computing the index numbers.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
28	Year(Position):2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 3Y.M.Sums : - 96 102 117 126 135 144 144 153 - Trend values : - 32 34 39 42 45 48 48 $51_{\text {Upward/ncreasing trend }}$	$\begin{gathered} 1 \\ 2 \\ 1+1 \\ \hline \end{gathered}$
29	Formula + Substitution + Ans $\left(\mathrm{y}_{4}-4 \mathrm{y}_{3}+6 \mathrm{y}_{2}-4 \mathrm{y}_{1}+\mathrm{y}_{0}=0 \Rightarrow \mathrm{y}_{2}=28\right)$ Formula + Ans $\quad\left(\mathrm{y}_{5}-4 \mathrm{y}_{4}+6 \mathrm{y}_{3}-4 \mathrm{y}_{2}+\mathrm{y}_{1}=0 \Rightarrow \mathrm{y}_{5}=70\right)$	$\begin{gathered} 1+1+1 \\ 1+1 \\ \hline \end{gathered}$
30	$\lambda=2, \mathrm{p}(\mathrm{x})=\frac{\mathrm{e}^{-\lambda} \lambda^{\mathrm{x}}}{\mathrm{x}!}, \mathrm{X}=0,1,2, \ldots$ (i) $\mathrm{p}(\mathrm{x}=2)=\frac{\mathrm{e}^{-2} 2^{2}}{2!}=0.2706$ (ii) $\mathrm{p}(\mathrm{x} \leq 1)=\mathrm{p}(0)+\mathrm{p}(1)=\mathrm{e}^{-\lambda}+2 \mathrm{e}^{-\lambda}=0.4059$	$\begin{gathered} \hline 1 \\ 1+1 \\ 1+1 \end{gathered}$
31	$\begin{aligned} & \text { Mean }=\frac{\mathrm{na}}{\mathrm{a}+\mathrm{b}}=2 \\ & \text { Variance }=\frac{\mathrm{nab}(\mathrm{a}+\mathrm{b}-\mathrm{n})}{(\mathrm{a}+\mathrm{b})^{2}(\mathrm{a}+\mathrm{b}-1)}=0.5454 \end{aligned}$	$\begin{gathered} 1+1 \\ 1+1+1 \end{gathered}$
32	H_{0} : There no significant difference between mean weight of boys and girls $\left(\mu_{1}=\mu_{2}\right)$ and $\mathrm{H}_{1}: \mu_{1} \neq \mu_{2}$ Test Statistic, $Z_{\text {cal }}=\frac{\overline{\mathrm{x}}_{1}-\overline{\mathrm{x}}_{2}}{\sqrt{\frac{\left(\mathrm{~s}_{1}\right)^{2}}{\mathrm{n}_{1}}+\frac{\left(s_{2}\right)^{2}}{\mathrm{n}_{2}}}}=\frac{50-54}{\sqrt{\frac{(8)^{2}}{64}+\frac{(12)^{2}}{48}}}=-2$ $\mathrm{k}=\mp 2.58$ Here, $\mathrm{Z}_{\text {cal }}$ lies in acceptance region. \therefore Accept H_{0} i.e., $\mu_{1}=\mu_{2}$	$\begin{gathered} \hline 1 \\ 1+1+1 \end{gathered}$
33	H_{0} : The average blood sugar is $120(\mu=120)$ and $\mathrm{H}_{1}: \mu<120$. Test statistic $t_{\text {cal }}=\frac{\bar{x}-\mu}{s / \sqrt{n-1}}=-6$ d.f $=16,-k=-1.75$, Here, $t_{\text {cal }}$ lies in rejection region. \therefore reject H_{0} i.e. $\mu<120$	$\begin{gathered} \hline 1 \\ 1+1 \\ 1+1 \end{gathered}$
34	$\begin{aligned} & \overline{\mathrm{c}}=\frac{\sum \mathrm{c}}{\mathrm{k}}=\frac{80}{20}=4, \quad \mathrm{CL}=\overline{\mathrm{c}}=4 \\ & \text { U.C. } L=\overline{\mathrm{c}}+3 \sqrt{\overline{\mathrm{c}}}=4+3 \sqrt{4}=4+6=10 \\ & \text { L.C. } \mathrm{L}=\overline{\mathrm{c}}-3 \sqrt{\overline{\mathrm{c}}}=4-3 \sqrt{4}=4-6=-2 \cong 0 \end{aligned}$	$\begin{gathered} 1 \\ 1+1 \\ 1+1 \end{gathered}$
35	Co-ordinates: $(0,9),(6,0)$ and $(0,4),(3,0)$ Drawing two lines. Identification of FR and its corner points: $\mathrm{A}(0,9), \mathrm{B}(6,0), \mathrm{C}(0,4), \mathrm{D}(3,0)$ Values of objective function: $Z_{A}=72, Z_{B}=30, Z_{C}=32, Z_{D}=15$ Optimum(minimum) value is 15 and optimum solution is $\mathrm{C}(3,0)$ For visually challenged students: Steps of solving LPP	$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 5 \end{aligned}$
36	B_{1} dominates B_{2}, B_{3}. Writing remaining pay matrix. In the remaining pay off matrix A_{2} dominates $\mathrm{A}_{1}, \mathrm{~A}_{3}, \mathrm{~A}_{4}$ Best strategies are $\mathrm{A}_{2}, \mathrm{~B}_{1}$ \therefore The value of the game 7	$\begin{gathered} 1+1 \\ 1 \\ 1 \\ 1 \\ \hline \end{gathered}$

SECTION - D

VII. 37	ASDR formula / showing one calculation	$\begin{gathered} \hline 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1+1 \\ 1+1+1 \end{gathered}$
38	$\begin{aligned} & \mathrm{p}_{1} \mathrm{q}_{0}: 60,144,12,12: \sum \mathrm{p}_{1} \mathrm{q}_{0}=228 \\ & \mathrm{p}_{0} \mathrm{q}_{0}: 50,120,18,12: \sum \mathrm{p}_{0} \mathrm{q}_{0}=200 \\ & \mathrm{p}_{1} \mathrm{q}_{1}: 48,126,20,15: \sum \mathrm{p}_{1} \mathrm{q}_{1}=209 \\ & \mathrm{p}_{0} \mathrm{q}_{1}: 40,105,30,15: \sum \mathrm{p}_{0} \mathrm{q}_{1}=190 \\ & \mathrm{P}_{01}^{\mathrm{L}}=\frac{\sum \mathrm{p}_{1} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}} \times 100=114, \quad \mathrm{P}_{01}^{\mathrm{P}}=\frac{\sum \mathrm{p}_{1} \mathrm{q}_{1}}{\sum \mathrm{p}_{0} \mathrm{q}_{1}} \times 100=110, \quad \mathrm{P}_{01}^{\mathrm{DB}}=\frac{\mathrm{P}_{01}^{\mathrm{L}}+\mathrm{P}_{01}^{\mathrm{P}}}{2}=112 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ 1 \\ 1 \\ 1 \\ 2+2+2 \end{gathered}$
39		$\begin{gathered} \text { Table-4 } \\ 1 \\ 1+1+1 \\ 1+1 \end{gathered}$
40. a)	$\begin{aligned} & N=256, n=5, p=0.5 \Rightarrow q=0.5 \\ & P(x)=n C_{x}(p)^{x}(q)^{n-x}, T(0)=N \times P(0)=256 \times q^{n}=256 \times(0.5)^{5}=8 \\ & \text { Remaining freqs are calculated by:T(x) }=\frac{n+1-\mathrm{x}}{\mathrm{x}} \frac{\mathrm{p}}{\mathrm{q}} T(\mathrm{x}+1) ; \text { Freqs: } 8,40,80,80,40,8 \end{aligned}$	$\begin{gathered} 1 \\ 1+1 \\ 2 \end{gathered}$
40. b)	H_{0} : Die is fair (i.e., $\mathrm{E}_{\mathrm{i}}=20$) and H_{1} : Die is not fair. Test Statistic, $\chi^{2}=\sum \frac{\left(\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}\right)^{2}}{\mathrm{E}_{\mathrm{i}}}=10.8$ Here, $\mathrm{k}_{2}=11.1$ Here, $\chi^{2}<\mathrm{k}_{2} \therefore$ Accept H_{0} i.e., Die is fair.	$\begin{gathered} \hline 1+1 \\ 1+1 \\ 1 \end{gathered}$

SECTION - E

VIII. 41	$\begin{aligned} & \mu=55, \sigma=3, Z\left(=\frac{\mathrm{x}-55}{3}\right) \text { is a } \mathrm{SNV} \\ & \mathrm{P}\left(\frac{46-55}{3} \leq \frac{\mathrm{x}-\mu}{\sigma} \leq \frac{64-55}{3}\right)=\mathrm{P}(-3<\mathrm{Z}<3)=0.9987-0.0013=0.9974 \\ & \mathrm{~N} \mathrm{P}(\mathrm{x})=1000(0.9974)=997.4 \end{aligned}$	$\begin{gathered} 1 \\ 1+1+1 \\ 1 \end{gathered}$
42	$\mathrm{H}_{0}: \mathrm{P}=0.1$ and $\mathrm{H}_{1}: \mathrm{P}>0.1$ Here, $p=\frac{x}{n}=\frac{13}{100}=0.13$ and Test statistic $Z_{\text {cal }}=\frac{p-P}{\sqrt{P Q / n}}=1$ $\mathrm{k}=1.65$ Here, $\mathrm{Z}_{\text {cal }}$ lies in acceptance region. \therefore Accept H_{0} i.e., Proportions of students wearing spectacles is 0.1	$\begin{gathered} 1 \\ 1+1+1 \end{gathered}$
43	H_{0} : The attributes smoking and literacy are independent. H_{1} : The attributes smoking and literacy are not independent. $\chi_{\mathrm{cal}}^{2}=\frac{\mathrm{N}(\mathrm{ad}-\mathrm{bc})^{2}}{(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})(\mathrm{a}+\mathrm{c})(\mathrm{b}+\mathrm{d})}=\frac{50(7 \times 12-18 \times 13)^{2}}{25 \times 25 \times 20 \times 30}=3$ $\mathrm{k}_{2}=6.65 \chi_{\text {cal }}^{2}<\mathrm{k}_{2} \therefore$ accept H_{0}, The attributes smoking and literacy are independent.	$\begin{gathered} 1 \\ 1+1+1 \end{gathered}$
44	$\begin{array}{r} \mathrm{P}-\mathrm{S}_{\mathrm{n}}: 4000,5000,5600, \\ \sum \mathrm{C}_{\mathrm{i}}: 1500, \end{array} 3100,4900, \quad 7000, \quad 9500,12500$ Minimum annual average cost $=$ Rs. 3220, Optimal replacement period is $5^{\text {th }}$ year.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

