

GOVERNMENT OF KARANATAKA

KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD II PU Statistics Scheme of Valuation March-2023

Q. No.	SECTION	- A	Marks
I. 1	c) Demography		1
2	d) 170		1
3	b) Mean > Variance		1
4	a) Point estimation		1
5	a) Equal to m + n -1		1
II. 6	a) Method of collecting vital statistics	iv) Census enumeration	1
	b) P ₀₁ × P ₁₀	i) Time reversal test	1
	c) $Z_1^2 + Z_2^2$	v) Chi-square	1
	d) Function of sample values	ii) Statistic	1
	e) Model-II	iii) Shortages are allowed	1
III.7	Geometric mean		1
8	5		1
9	Sample mean		1
10	Chance causes		1
11	First quadrant		1
IV.12	Size of the cohort is radix		1
13	Current year price (p ₁)		1
14	Historigram		1
15	0		1
16	$\sum a_i \neq \sum b_j$ (The sum of availability is not equal to $\sum a_i \neq \sum b_j$)	quals to the sum of requirement)	
	OR $\sum a_i = \sum b_j$, If this condition is violated	the T.P. is said to be unbalanced.	1

SECTION-B

V.17	Base period should be economically stable.	1
	The base period should not be too distant from the given period.	1
18	$\sum (Y - \widehat{Y}) = 0$ and $\sum (Y - \widehat{Y})^2$ is the least.	1+1
19	Interpolation is the technique of estimating the value of the dependent variable(Y) for any intermediate value of the independent variable(X). Extrapolation is the technique of estimating the value of Y for any value	1
	of X which is outside the range of the given series.	1
20	X : 0 1 : Total	1
	p(x): 3/5 2/5 : 1	1
21	$S. E(p) = \frac{\sigma}{\sqrt{n}} = 2$	1+1
22	The error that occurs by rejecting null hypothesis when it is actually true is called <i>Type I Error</i> . The error that occurs by accepting null hypothesis when it is actually not true is called <i>Type II Error</i> .	1
00	V-	1 . 1
23	LCL = $\overline{X}' - A \sigma' = 25 - 1.5$ (2) = 22	1+1
24	$Q^0 = \sqrt{\frac{2C_3R}{C_1}} = \sqrt{\frac{2(50)(200)}{2}} = 100 \text{ units/cycle.}$	1+1

SECTION - C

VI.25	WSFR formula or $\frac{320}{8000} \times 1000$: 40, 60, 90, 100, 69, 30, 11: 400	1+2	
	GRR = i \sum WSFR = 5 × 400 = 2000.	1+1	
26	$P = \frac{p_1}{p_0} \times 100 \text{ or } \frac{25}{20} \times 100$: 125, 120, 83.33, 80 : Total	1+1	
	Log P : 2.0969 2.0792 1.9208 1.9031 : 8	1	
	Formula, Ans = 100	1+1	
27	Consumer price index number is the index number of the cost met by a		
	specified class of consumers in buying a 'basket of goods and services'.	1	
	1. Defining purpose and scope.	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	
	2. Conducting family budget enquiry and selecting the weights.		
	3. Obtaining price quotations.4. Computing the index numbers.	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	
28	Year(Position):2012 2013 2014 2015 2016 2017 2018 2019 2020 2021	1	
20	3Y.M.Sums : - 96 102 117 126 135 144 144 153 -	2	
	Trend values: - 32 34 39 42 45 48 48 51 Upward/Increasing trend	1+1	
29	Formula + Substitution + Ans $(y_4 - 4y_3 + 6y_2 - 4y_1 + y_0 = 0 \Rightarrow y_2 = 28)$	1+1+1	
	Formula + Ans $(y_5 - 4y_4 + 6y_3 - 4y_2 + y_1 = 0 \Rightarrow y_5 = 70)$	1+1	
30	$\lambda = 2$, $p(x) = \frac{e^{-\lambda} \lambda^x}{x!}$, $X = 0, 1, 2,$	1	
	(i) $p(x = 2) = \frac{e^{-2}2^2}{2!} = 0.2706$	1+1	
	(ii) $p(x = 2) = \frac{1}{2!} = 0.2700$ (ii) $p(x \le 1) = p(0) + p(1) = e^{-\lambda} + 2 e^{-\lambda} = 0.4059$	1+1	
31	$Mean = \frac{na}{a+b} = 2$	1+1	
	Variance = $\frac{\text{nab(a+b-n)}}{(a+b)^2(a+b-1)} = 0.5454$	1+1+1	
32	H_0 : There no significant difference between mean weight of boys and girls $(\mu_1=\mu_2)$ and H_1 : $\mu_1 eq \mu_2$	1	
	Test Statistic, $Z_{cal} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{(s_1)^2 + (s_2)^2}} = \frac{50 - 54}{\sqrt{(8)^2 + (12)^2}} = -2$	1+1+1	
	$\sqrt{\frac{(8)}{n_1} + \frac{(8)}{n_2}} \qquad \sqrt{\frac{(8)}{64} + \frac{(12)}{48}}$ $k = \mp 2.58 \text{ Here, } Z_{cal} \text{ lies in acceptance region.} \therefore \text{Accept } H_0 \text{ i.e., } \mu_1 = \mu_2$		
33	H_0 : The average blood sugar is 120 ($\mu = 120$) and H_1 : $\mu < 120$.	1	
	Test statistic $t_{cal} = \frac{\bar{x} - \mu}{s/\sqrt{n-1}} = -6$	1+1	
	d.f = 16, -k = -1.75, Here, t_{cal} lies in rejection region. \therefore reject $H_{0 \text{ i.e.}} \mu < 120$	1+1	
34	$\bar{c} = \frac{\sum c}{k} = \frac{80}{20} = 4$, $CL = \bar{c} = 4$	1	
	U.C.L = $\bar{c} + 3\sqrt{\bar{c}} = 4 + 3\sqrt{4} = 4 + 6 = 10$	1+1	
	L.C.L = $\overline{c} - 3\sqrt{\overline{c}} = 4 - 3\sqrt{4} = 4 - 6 = -2 \approx 0$	1+1	
35	Co-ordinates: (0, 9), (6, 0) and (0, 4), (3, 0) Drawing two lines.	2	
	Identification of FR and its corner points: A(0, 9), B(6, 0), C(0, 4), D(3, 0)	1	
	Values of objective function : $Z_A = 72$, $Z_B = 30$, $Z_C = 32$, $Z_D = 15$	1	
	Optimum(minimum) value is 15 and optimum solution is C(3, 0)	1	
	For visually challenged students: Steps of solving LPP	5	
36	B ₁ dominates B ₂ , B ₃ . Writing remaining pay matrix.	1+1	
	In the remaining pay off matrix A_2 dominates A_1 , A_3 , A_4		
	Best strategies are A ₂ , B ₁	1 1	
	∴ The value of the game 7	1	

SECTION - D

	SECTION - D	
VII.37	ASDR formula / showing one calculation	1
	A: 17, 6, 13, 43	1
	$PA: 102000, 72000, 104000, 172000: \Sigma PA = 4,50,000$	1
	B: 20, 3, 13, 40	1
	PB: 120000, 36000, 104000, 160000: Σ PB = 4,20,000	
	$\sum P = 30,000$, STDR formula	
	STDR(A) = 15, STDR(B) = 14. Comment : Town B is healthier.	1+1+1
38	p_1q_0 : 60, 144, 12, 12 : $\sum p_1q_0 = 228$	1
	p_0q_0 : 50, 120, 18, 12 : $\sum p_0q_0 = 200$	1
	p_1q_1 : 48, 126, 20, 15 : $\sum p_1q_1 = 209$	1
	p_0q_1 : 40, 105, 30, 15 : $\sum p_0q_1 = 190$	1
	$P_{01}^{L} = \frac{\sum p_{1}q_{0}}{\sum p_{0}q_{0}} \times 100 = 114 , P_{01}^{P} = \frac{\sum p_{1}q_{1}}{\sum p_{0}q_{1}} \times 100 = 110 , P_{01}^{DB} = \frac{P_{01}^{L} + P_{01}^{P}}{2} = 112$	2+2+2
39	$x Y : -100 -30 0 30 120 : \sum x Y = 20$	
	x^2Y : 200 30 0 30 240 : $\sum x^2 Y = 500$	
	$\sum Y = 180$, $\sum x = 0$, $\sum x^2 = 10$, $\sum x^4 = 34$, $n=5$	Table-4
	$b = \frac{\sum xY}{\sum x^2} = \frac{20}{10} = 2$	1
	$\sum Y = na + c \sum x^2$ and $\sum x^2 Y = a \sum x^2 + c \sum x^4 \Rightarrow c = 10$ and $a = 16$	1+1+1
	$\therefore \text{ The trend line is, } \widehat{Y} = 16 + 2 x + 10 x^2, \qquad \widehat{Y}_{2022} = 112$	1+1
40. a)	$N = 256$, $n = 5$, $p = 0.5 \Rightarrow q = 0.5$	1
	$P(x) = nC_x(p)^x(q)^{n-x}$, $T(0) = N \times P(0) = 256 \times q^n = 256 \times (0.5)^5 = 8$	1+1
	Remaining freqs are calculated by: $T(x) = \frac{n+1-x}{x} \frac{p}{q} T(x+1)$; Freqs: 8, 40, 80, 80, 40, 8	2
40. b)	H_0 : Die is fair (i.e., E_i = 20) and H_1 : Die is not fair.	1+1
	Test Statistic, $\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i} = 10.8$	1+1
	Here, $k_2 = 11.1$ Here, $\chi^2 < k_2 :$ Accept H_0 i.e., Die is fair.	1
	SECTION E	

SECTION - E

VIII.41	$\mu = 55, \sigma = 3, \ Z\left(=\frac{x-55}{3}\right)$ is a SNV	1
	$P\left(\frac{46-55}{3} \le \frac{x-\mu}{\sigma} \le \frac{64-55}{3}\right) = P(-3 < Z < 3) = 0.9987 - 0.0013 = 0.9974$	1+1+1
	N P(x) = 1000 (0.9974) = 997.4	
42	H_0 : P = 0.1 and H_1 : P > 0.1	
	Here, $p = \frac{x}{n} = \frac{13}{100} = 0.13$ and Test statistic $Z_{cal} = \frac{p-P}{\sqrt{PQ/n}} = 1$	1+1+1
	k = 1.65 Here, Z _{cal} lies in acceptance region.	
	∴ Accept H ₀ i.e., Proportions of students wearing spectacles is 0.1	1
43	H ₀ : The attributes smoking and literacy are independent.	
	H ₁ : The attributes smoking and literacy are not independent.	
	$\chi^{2}_{cal} = \frac{N(ad - bc)^{2}}{(a+b)(c+d)(a+c)(b+d)} = \frac{50(7 \times 12 - 18 \times 13)^{2}}{25 \times 25 \times 20 \times 30} = 3$	1+1+1
	k_2 = 6.65 χ^2_{cal} < k_2 : accept H_0 , The attributes smoking and literacy are independent.	1
44	$P - S_n$: 4000, 5000, 5600, 6200, 6600, 7000	1
	$\sum C_i$: 1500, 3100, 4900, 7000, 9500, 12500	1
	$T_n:5500,\ 8100,\ 10500,\ 13200,\ 16100,\ 19500$	1
	A(n): 5500, 4050, 3500, 3300, 3220 , 3250	1
	Minimum annual average cost = Rs. 3220, Optimal replacement period is 5th year.	1