

Government of Karnataka

Karnataka School Examination and Assessment Board

II Year PUC Examination March – 2023

Scheme of Evaluation

Subject Code: 34

Subject: Chemistry

	PART-A	
I.	Select the correct option from the given choices:	15×1=15
1)	Which kind of defect is introduced by doping intrinsic semiconductors?	
	a) Dislocation defect b) Electronic defect	
	c) Interstitial defect d) Schottky defect	
Ans:	Option b) OR Electronic defect OR Option c) Or Interstitial defect	1
2)	A binary liquid mixture that forms maximum boiling azeotrope at a specific composition	
	is	
	a) Ethanol + Water b) n - Hexane + n- Heptane	
	c) Benzene + Toluene d) Nitric acid + Water	
Ans:	Option (d) or Nitric acid and water	1
3)	The value of van't Hoff factor (i) for ethanoic acid in benzene is nearly	
	a) 2 b) 1 c) 0.5 d) 0	
Ans:	Option c) OR 0.5 OR $\frac{1}{2}$	1
4)	On charging the Lead storage battery, PbSO ₄ on cathode is converted into	
	a) PbO ₂ b) Pb c) PbO d) No change	
Ans:	Option a) OR PbO ₂ OR option b) or Pb	1
5)	In the Ambonius equation the factor $-\frac{Ea}{RT}$ compared to	
	In the Armenius equation the factor e a corresponds to	
	a) Collision frequency	
	b) Proper orientation	
	c) The fraction of molecules with kinetic energy >Ea	
	d) Threshold energy	
Ans:	Option c) OR The fraction of molecules with kinetic energy >Ea	1
6)	Which one of the following is not applicable to the phenomenon of absorption?	
	a) $\Delta G = -Ve$ b) $\Delta S = -Ve$	
	c) $\Delta H = -Ve$ d) $\Delta H = +Ve$	
Ans:	Option d) OR $\Delta H = + Ve$	1

7)	What is the role of NaCN in the separation of ZnS and PbS by froth floatation method?	
	a) depressant b) froth stabilizer c) collector d) reductant	
Ans:	Option a) OR Depressant	
8)	On complete hydrolysis of XeF ₆ with water, the product formed is	
	a) XeF_4 b) XeO_3 c) XeO_2F_2 d) $XeOF_4$	
Ans:	Option b) OR XeO ₃	1
9)	Which of the following element is not regarded as transition element?	
	a) Fe b) Mn c) Sc d) Zn	
Ans:	Option d) Or Zn	1
10)	M C- bond in metal carbonyls possesses	
	a) Ionic character b) Both σ and π characters	
	c) π – character only d) Ion-dipole forces	
Ans:	Option b) OR Both σ and π characters	1
11)	Identify chiral molecule in the following compounds.	
	a) 2- Bromobutane b) 1-Bromobutane	
	c) 2- Bromopropane d) 2-Bromo-2-methyl-Propane	
Ans:	The given particular options are not discussed under chiral concept in NCERT text	1
	book. For any option marks should be allotted	
12)	When CH ₃ ONa reacts with (CH ₃) ₃ CBr, it gives exclusively	
	a) t- Butylmethyl ether b) 2,2-Dimethyl propane	
	c) 2- Methyl propene d) 2-Methyl Propan -2-ol	
Ans:	Since it is higher application type of question marks should be allotted for any options.	1
13)	Iodoform reaction with NaOI can be used for the detection of the compound	
	a) $C_2 H_5 COC_2 H_5$ b) $CH_3 CHO$	
	c) $CH_3CH_2CH_2OH$ d) $(CH_3)_3COH$	
Ans:	The given options are not discussed under iodoform reaction concept in NCERT text	1
	book. For any option marks should be allotted	
14)	Nitration of aniline in the strongly acidic medium at 288 K yields	
	a) 2,4,6 – Trinitroaniline b) o and p – Nitroanilines	
	c) m- Nitroaniline d) o, m, and $p - Nitroanilines$	
Ans:	Option b) OR o and $p - Nitroanilines$	I
	Option d) OR α m and $n = Nitroanilines$	
15)	Which hormono is an indinated derivative of amino poid type: 2^{2}	
	which normone is an iodinated derivative of amino acid tyrosine?	
	a) Insulin b) Epinephrine c) I hyroxin d) Glucagon	<u> </u>
Ans:	Option c) OR Thyroxin	1

II.	Fill in the blanks by choosing the approx	opriate word from those given in the	
	brackets:		5×1=05
	[Radium -226, Anoxia, Norethindrone, Pseu	do first order, Diphenyl]	
16)	Because of low concentration of O_2 in the b	lood and tissues of people living at high	
	altitudes, suffer from a disease called		
Ans:	Anoxia		
17)	Inversion of cane sugar is an example of	reaction.	
Ans:	Pseudo first order		
18)	Radon is obtained as a decay product of	·	
Ans:	Radium -226		
19)	When Chlorobenzene is treated with sodium in	dry ether is formed.	
Ans:	Diphenyl		
20)	is a synthetic progesteror	ne derivative, most widely used as an	
	antifertility drug.		
Ans:	Norethindrone		
	PART	- B	
III.	Answer any four of the following. Each ques	stion carries two marks.	$4 \times 2 = 08$
21)	Give any two differences between Frenkel d	efect and Schottky defect.	
Ans:	Frenkel defect	Schottky defect	
	• The smaller ion (cat ion) is dislocated from its normal site to an interstitial site	• It is caused by missing of equal number of cat ions and anions from	
		lattice points to maintain electrical neutrality.	
	• It is shown by ionic substances in which there is a large difference in the size of	• It is shown by ionic substances in which the cation and anion are of	
	ions	almost similar sizes.	
	Density is not changed	Density decreases	
	• It creates both vacancy and interstitial defects.	• It creates vacancy defect.	
	Any two correct answers (Each difference 1ma	urk)	
22)	Λ^0_{m} for NaCl, HCl and NaAc (Sodium at mol ⁻¹ and 91.0Scm ² mol ⁻¹ respectively. Calcu	cetate) are 126.4Scm ² mol ⁻¹ , 425.9Scm ² ulate Λ^0 m for HAc (acetic acid).	
Ans:	$\Lambda^0 \text{and} = \Lambda^0 \text{and} + \Lambda$	$\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$	1
	= 425 9 + 91 0 - 1	m (NaAc) = 1 m (NaCl)	1
	$= 390.5 \text{ Scm}^2 \text{ mc}$	$ -1 ^{-1}$	
23)	What are the two criteria for the effective co	llisions between molecules in a chemical	<u> </u>
20)	reaction?	insions between indiceutes in a chemical	
Ans:	i) Activation energy OR Sufficient kinetic en	nergy.	1
			1

24) a)	Give reason:	
b)	Actinoids exhibit a greater range of oxidation states.	
	Zr and Hf have the almost identical atomic radii.	
Ans: a)	Due to very comparable energies (small energy gap) between 5f, 6d and 7s subshells.	1
b)	Due to lanthanoid contraction	1
25)	What happens when Phenol is heated with Zinc dust? Write equation.	
Ans:	Phenol is converted to benzene on heating with zinc dust.	1
	$\begin{array}{c} OH \\ + Zn \\ \end{array} + Zn \\ \end{array} + ZnO \\ \end{array}$	1
	OR	
	$\begin{array}{c} OH \\ \hline \\ \hline \\ Phenol \end{array} + Zn \xrightarrow{\Delta} \qquad \qquad + ZnO \\ \hline \\ Benzene \end{array}$	
	OR Self-explanatory equation:2Marks	
26)	How is Benzoyl chloride converted into Benzaldehyde? Name the reaction.	
Ang	Asid shlaridag is hydrogeneted over establist polledium on herium sulphote to give	
Ans:	aldebyde	1
	Benzavj chloride (Equation OR Explanation) Any one: 1marks	
	Rosenmund reduction.	1
27)	What is the role of following chemicals in food? a) Sodium benzoate b) Butylated Hydroxy Anisole (BHA).	
Ans: a)	Food preservative	1
b)	Antioxidant.	1
28)	Why soap does not work in hard water?	
Ans:	Hard water contains calcium and magnesium ions. When soaps are dissolved in hard water, these ions displace sodium or potassium from their salts and form insoluble	1
	calcium or magnesium salts of fatty acids. These insoluble salts separate as scum.	1
	$2C_{17}H_{35}COONa + CaCl_2 \rightarrow 2NaCl + (C_{17}H_{35}COO)_2Ca$ (Insoluble calcium stearate, scum)	

	PART - C	
IV.	Answer any four of the following. Each question carries three marks.	4×3=12
29)	Explain the extraction of 'blister copper' from copper matte. Write the balanced equations for the reactions taking place in then convertor.	
	Copper matte is charged into silica lined convertor. Some silica is added and hot air blast is blown to convert the FeS to FeOand Cu_2S/Cu_2O to the metallic copper. Following reactions take place:	1
	$2FeS + 3O_2 \rightarrow 2FeO + 2SO_2$	
	$FeO + SiO_2 \rightarrow FeSiO_3$	1
	$2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$	1
	$2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$	
	The solidified copper obtained has blistered appearance due to the evolution of SO_2 and so it is called blister copper	
30)	Write the chemical equations with reaction conditions involved in the manufacture of Nitric acid by Ostwald's process.	
Ans:	Step-1: Oxidation of ammonia to nitric oxide:	
	$4NH_3(g) + 5O_2(g) \xrightarrow{Pt/Rh \text{ gauze catalyst}}{500 \text{ K}, 9 \text{ bar}} \rightarrow 4NO(g) + 6H_2O(1)$	1
	(from air)	1
	Step-2: Oxidation of NO to NO ₂ : $2NO_{(g)} + O_{2(g)} \longrightarrow 2NO_{2(g)}$	1
	Step-3: Formation of nitric acid: $3NO_{2(g)}+H_2O(l) \longrightarrow 2HNO_{3(aq)}+NO_{(g)}$	
31)	Complete the following equation:	
	$PbS + 4O_3 \longrightarrow \underline{\qquad} + 4O_2$	
b)	$5SO_2 + 2MnO_4^- + 2H_2O \longrightarrow 5SO_4^- + 4H^+ + ___$	
c)	$C_{12}H_{22}O_{11} \xrightarrow{\text{conc. } H_2SO_4} 12C + 11H_2O$	
Ans: a)	PbSO ₄	1
c)	$2Mn^{2+}$	1
32 a)		
b)	How is chlorine manufactured by Deacon's process? Give equation.	
Ans: a)	a) By exidation of hydrogen chloride gas by atmospheric exygen in the presence of	1
7 ms. a)	$CuCl_2$ at 723K.	1
	$4\text{HCl} + \text{O}_2 \xrightarrow{\text{CuCl}_2} 2\text{Cl}_2 + 2\text{H}_2\text{O}$	1
b)	Structure of Chlorous acid is	
	H CI O	1

33. a)	The transition metals and their compounds are known for their catalytic activity.	
	Give two reasons.	
b)	What is Mischmetall?	
Ans:a)	1) Due to variable (multiple) oxidation states.	1+1
,	2) Large surface area for adsorption of reactant.	
	3) Formation of intermediate compounds.	
	4) due to their ability to form complexes	
	(Any two correct answers)	
b)	For this question, Definitions for mischmetal is not available in textbook. Only its compositions, applications are given. Award one Mark if this question is attempted.	1
34)	Explain the preparation of Potassium permanganate from MnO ₂ with equations.	•
Ans:	KMnO ₄ is manufactured from pyrolusite (MnO ₂)	
	Step – I : Pyrolusite is powdered and fused with KOH in presence of KNO ₃ as an oxidizing agent to form potassium manganate.	1
	$2MnO_2 + 4KOH + O_2 \longrightarrow 2K_2MnO_4 + 2H_2O$	1
	Step – II: The potassium manganate undergoes disproportionation in acidic or neutral medium	1
	to give permanganate. $2N_{\rm H}O^{2-} + 4U^{+}$	
	$3MnO_4 + 4H \longrightarrow 2MnO_4 + MnO_2 + 2H_2O$	1
	The purple solution so obtained is concentrated to get dark purple crystals of $KWHO_4$.	1
	Permanganate ion is alsobtained by electrolytic oxidation of manganate ion in alkaline medium.	
35)	Out of the following two coordination entities; cis - $[PtCl_2 (en)_2]^{2+}$ and (cis - $[PtCl_2 (en)_2]^{2+}$	
a)	(en)2] . Which is Chiral (ontically active)?	
b)	Draw the structures of its enantiomers.	
Ans: a)	cis - $[PtCl_2 (en)_2]^{2+}$ is optically active	1
	Structure of its enetiomers	
b)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 + 1
	en en	
	dextro mirror laguo	
	ille vo	
36)		
50)	According to Valence Bond Theory [VBT], explain geometry, hybridisation and magnetic property of $[CoF_6]^{-3}$ ion.[Atomic number of Cobalt is 27].	
Ans:	In this complex, the oxidation state of Co is $+3$. The electronic configuration of cobalt in $+3$	
	oxidation state is $[Ar]3d^64s^0$.	
	Orbitals of Co ³⁺ ion are represented as	
	3d $4s$ $4p$ $4d$	
	Since F ⁻ ion provides a weak ligand field, one 4s, three 4p and two outer 4d-orbitals hybridised to yield six sp^3d^2 hybrid orbitals pointing towards the six corners of an octahedron.	1

	16_{-r^3}	
	Packing efficiency = $\frac{3}{3}$ ×100 = 74%	
	$(2\sqrt{2} r)^3$	
b)	$z \times M$	1
	$d = \frac{1}{a^3 \times N_A}$	
	2 × 39 78	1
	$=\frac{2\times 3^{3}}{(542\times 10^{-10})^{3}\times 6.022\times 10^{23}}=\frac{70}{95.87}=0.813 \text{ g cm}^{-3}$	
	OP	
	$-\frac{2\times39\times10^{-3}}{2\times39\times10^{-3}}$ $-\frac{78\times10^{-3}}{2\times10^{-3}}$ -813 kg m ⁻³	
	$(542 \times 10^{-12})^3 \times 6.022 \times 10^{23} - 95.87 \times 10^{-6} - 015$ kg m	
38) a)	450cm ³ of an aqueous solution of a protein contains 1.0g of the protein. The	
	osmotic pressure of such a solution at 310K is found to be 3.1 X 10^{-4} bar.	
b)	Calculate the molar mass of the protein. ($R = 0.083Lbar$ mol ⁻ R^{-}).	
	State Raoult's law of relative lowering of vapour pressure. Write its mathematical form	
Ans: a)	w. DT	1
Alls. a)	$M_2 = \frac{W_2 K I}{\pi V}$	1
	$\pi = 3.1 \times 10^{-4} \text{ bar}, V = 450 \text{ cm}^3 = 0.450 \text{ L}$	
	$T = 310K$, $R = 0.083Lbar K^{-1} mol^{-1}$ $w_2 = 1.0g$	1
	$M = \frac{1.0 \times 0.083 \times 310}{1000}$	
	$3.1 \times 10^{-4} \times 0.450$	
	$=\frac{25.73\times10^4}{10^4}$	
	1.395	1
	$=1,84,444 \text{ g mol}^{-1}$	1
b)	Statement of Raoult's law of Relative lowering of vapour pressure is not available in NCERT textbook.	
	This question may be treated as out of the NCERT text book syllabus. Award one	
	Mark if this question is attempted.	
39) a)	Calculate the standard Gibb's energy $(\Delta_r G^{\flat})$ for the reaction at 298 K:	
	$\operatorname{Zn}_{(s)} + 2\operatorname{Ag}^+_{(aq)} \to \operatorname{Ag}_{(s)} + \operatorname{Zn}^{2+}_{(aq)}$	
	[Given: $E_{(Zn)}^{0}^{2+}/Zn$] =0.76V & $E_{(Ag)}^{0}^{+}/Ag$] = +0.80V; & F = 96,500Cmol ⁻¹].	
b)	Write the balanced equations for the reactions taking place at anode and cathode	
	during rusting of iron.	
Ans: a)	• $E_{cell}^0 = E_{Cathode}^0 - E_{Anode}^0 = E_{Ag}^0 - E_{Zn}^0 = 0.80 - (0.76) = 1.56$	1
	• $\Delta G^0 = -nFE^0_{Cell} = -2 \times 96500 \times 1.56 = -301080 \text{ J mol}^{-1}$	
	or $-301.080 \text{ kJ mol}^{-1}$	
b)	Anode: $2Fe_{(s)} \longrightarrow 2Fe^{2+}_{(aq)} + 4e^{-}$	1
		1

	Cathode: $O_{2(g)} + 4H^+_{(aq)} + 4e^- \longrightarrow 2H_2O_{(l)}$	
40) a)	Derive an integrated rate equation for the rate constant of a first order reaction.	
b)	Draw a graph of potential energy v/s reaction coordinate showing the effect of catalyst on the rate of a reaction.	
Ans: a)	Consider a first order reaction,	
	$R \longrightarrow P$	
	A first order reaction is one in which the rate is directly proportional to first power of the reactant concentration.	
	Therefore, according to rate law,	
	Rate α [R] ¹	1
	$Rate = k[R]^1 \qquad \dots (1)$	
	Where k is rate constant or velocity constant	
	But, Rate = $-\frac{d[R]}{dt}$	
	$\therefore \qquad -\frac{d[R]}{dt} = k[R] \qquad \dots (2)$	
	Rearrange the equation (2), we get	
	$\frac{d[R]}{[R]} = -kdt \qquad \dots(3)$	
	Integrate equation (3)	
	$\int \frac{1}{[R]} d[R] = -k \int dt$	
	$\ln[\mathbf{R}] = -k\mathbf{t} + \mathbf{I} \qquad \dots (4)$	
	When $t=0$, $[R]=[R]_o$ where $[R]_o$ is the initial concentration	
	of reactant R.	
	$\ln[\mathbf{R}]_{o} = -k \times 0 + \mathbf{I}$	
	where I is called integration constant	1
	$I = ln[R]_o$	
	Substituting the value of I in equation (4) we get,	
	$\ln[\mathbf{R}] = -kt + \ln[\mathbf{R}]_{o}$	
	$kt = \ln [R]_o - \ln[R]$	
	$kt = ln \frac{[R]_o}{[R]}$	
	$kt = 2.303 \log_{10} \frac{[R]_{o}}{[R]}$	
	$k = \frac{2 \cdot 303}{t} \log_{10} \frac{[\mathbf{R}]_{o}}{[\mathbf{R}]}$	1

44) a)	How is ketone prepared from Grignard reagent and nitrile? Explain with an	
b)	example. Explain Hell – Volhard – Zelinsky reaction. Give equation.	
c)	What is the role of dry HCl gas in the addition of alcohols to aldehydes?	
Ans:	Treatment of nitrile with Grignard reagent followed by hydrolysis gives a ketone.	
a)	Ether H2O ⁺	
	$C_2H_5CN + C_6H_5MgBr \longrightarrow C_2H_5 - C = NMgBr \longrightarrow C_2H_5 - C - C_6H_5$	
	C ₆ H ₅ 1 - Phenylpropanone	
b)	Carboxylic acids having an α -hydrogen on treated with chlorine or bromine in the	
	presence of red Phosphorus gives α-halocarboxylic acid.	1
	$R - CH - COOH \xrightarrow{1. X_2/Red phosphorus} R - CH - COOH + HX$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	X = Cl. Br	
	α-Halocarboxylic acid	1
c)	Dry hydrogen chloride protonates the carbonyl oxygen & increase the electrophilicity of	1
	the carbonyl carbon.	
45) a)	Write the equations of reactions involved in the Gabriel Phthalimide synthesis of a	
L)	primary amine.	
D)	Complete the following reactions by giving major products	
	(i) $C_6H_5NH_2 \xrightarrow{\text{Harto}_2 + 2\pi \alpha k}$	
1)	2/3K - 2/8K	
	+ - N ₂ Cl NH ₂	
II)		
	(ii) \bigcirc + \bigcirc $\xrightarrow{\mathbf{H}}$	
Ans:a)	Phthalimide on treatment with ethanolic potassium hydroxide (KOH) form potassium	
	salt of phthalimide which on heating with alkyl halides followed by alkaline hydrolysis	1
	\mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O}	
	C C C C C C C C C C	
	$\left \left[\bigcirc \right] \qquad N-H \xrightarrow{KOH} \left[\bigcirc \right] \qquad NK^{*} \xrightarrow{R-X} \left[\bigcirc \right] \qquad N-R \xrightarrow{MUUT(w)} \left[\bigcirc \right] \qquad \stackrel{+K-NF}{(1^{\circ} amine}) \left[\bigcirc \right] \left[\bigcirc \left[\bigcirc \right] \left[\bigcirc \right] \left[\bigcirc \left[\bigcirc \left[\bigcirc \left[\bigcirc \left[\bigcirc \right] \left[\bigcirc \left[$	1 ₂
	$ \begin{array}{ c c } \hline c' & \hline c'$	
	O Ö O O Phthalimide N-Alkyl phthalimide Sodium phthalate	
b)	(i) $C_6H_5N_2^+Cl$ or $C_6H_5N_2Cl$	1
i)		
ii)	$N = N - NH_2$	
		1

46) a) b) c)	Write the Haworth's structure of lactose. What is denaturation of proteins? Which level of structure remains intact during denaturation of globular proteins? Name the sugar moiety present in DNA.				
Ans:a)	$\begin{array}{c} \begin{array}{c} CH_2OH \\ OH \\ H \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ OH \\ H \\ \end{array} \\ \begin{array}{c} H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ OH \\ H \\ \end{array} \\ \begin{array}{c} H \\ H \\ \end{array} \\ \begin{array}{c} CH_2OH \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ \end{array} \\ \begin{array}{c} H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ \end{array} \\ \begin{array}{c} H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ \end{array} \\ \begin{array}{c} H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ \end{array} \\ \begin{array}{c} H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ \end{array} \\ \begin{array}{c} H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ \end{array} \\ \begin{array}{c} H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H \\ H \\ H \\ H \\ H \\ H \\ \end{array} \\ \begin{array}{c} OH \\ H $	2			
b)	Loss of biological activity of protein by heating or change in temperature or pH is called denaturation of protein. OR	1			
	Co-agulation of protein is called denaturation of protein.	1			
	Primary (1 ⁰) structure remains intact.				
c)	Deoxyribose OR β -D-2-deoxyribose;	1			
47) a)	How is Buna – N prepared? Give equation.				
b)	b) Name the monomers of the biodegradable polymer Nylon -2-nylon-6.				
C)	Write the partial structure of Dacron.				
Ans:a)	Buna – N manufactured by the co-polymerisation of 1, 3-butadiene and acrylonitrile in presence of peroxide or sodium catalyst.	1			
	$nCH_2 = CH - CH = CH_2 + nCH_2 = CH - CH_2 - CH_2$	1			
	1, 3-Butadiene CN Buna-N CN				
b)	Acrylo nitrile Aminocaproic acid	1			
c)	$ -CH_2CH_2 - O - C - C - C - n $	1			